BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 80, Number 1, January 1974

STABILITY AND TRANSVERSALITY

BY ROBERT D. MAY¹

Communicated by Shlomo Sternberg, June 27, 1973

1. Introduction. Let N and P be C^{∞} manifolds of dimensions n and p and let $C^{\infty}(N, P)$ denote the space of all C^{∞} mappings $f: N \rightarrow P$ with the fine C^{∞} topology [2, II, p. 259]. A mapping $f \in C^{\infty}(N, P)$ may be stable in either the C^{∞} [2, II] or topological [3] sense. In this paper we state certain results connecting these two concepts of stability. In a related development we also outline a procedure for showing that topologically stable mappings satisfy certain transversality conditions. All of the results given here are based on our thesis [4] to which we refer for proofs and further details.

2. A conjecture. It is clear that any C^{∞} stable mapping is also topologically stable, but the converse is false in general. In fact for N compact Mather has shown that the topologically stable mappings are always dense in $C^{\infty}(N, P)$ [3], while the C^{∞} stable mappings are dense if and only if n, p lie in a certain "nice" range [2, VI]. However, one may still conjecture the following:

(2.1) If N is compact and n, p lie in the "nice" range, then any topologically stable mapping

 $f: N \rightarrow P$

is also C^{∞} stable.

In [4] we verify the above conjecture for the comparatively simple cases p > 2n ("Whitney embedding" range) and p=1 ("functions"). We obtain related results for a more substantial range of dimensions by introducing a "uniform stability" condition.

DEFINITION. $f \in C^{\infty}(N, P)$ is uniformly stable provided that for any family

$$F:(\boldsymbol{R}^{K},0)\to(C^{\infty}(N,P),f)$$

of maps (parameterized by \mathbf{R}^{K} , any K > 0) for which the associated map

 $\tilde{F}: N \times \boldsymbol{R}^{K} \to P \times \boldsymbol{R}^{K}$

AMS (MOS) subject classifications (1970). Primary 58C25.

¹ This research was partially supported by NSF grant GP-31359-X-1.

Copyright © American Mathematical Society 1974