BRANCHED AND FOLDED PARAMETRIZATIONS OF THE SPHERE

BY GEORGE K. FRANCIS
Communicated by Glen Bredon, May 15, 1973

0 . This study is addressed to the following genre of topological problems. Let Π be a subset of a manifold W and $\varphi: \Sigma \rightarrow \Pi$ be a parametrization of Π by a manifold collection Σ. We seek a factorization $\Sigma \rightarrow{ }^{i} M \rightarrow{ }^{F} W$, $\varphi=F \circ i$, where i is an inclusion of Σ in a manifold M of the same dimension as W and F is a map in a certain class, such that the invariants of (W, Π, φ) in some reasonable sense determine (M, F, i) up to topological equivalence. For instance, let Π be a closed, but not necessarily simply closed polygon in the complex plane W, Σ the extended real line and F a Schwarz-Christoffel transformation of the Gaussian upper half plane M, such that the image $[\varphi]$ of $\varphi=F \mid \Sigma$ coincides with Π. Necessary and sufficient conditions for Π to bound a conformal, or more generally, a holomorphic image of a disc were first given by Titus [11]. In view of the Stoïlow-Whyburn [16] theory, it proved more convenient to use light open maps F such that φ is a regular parametrization of a smooth, closed curve Π. If the curve lies in general position, the conditions can be expressed in terms of the Whitney [14]-Titus [10] intersection sequence, which is a combinatorial structure on the set of signed self-intersection points $X(\varphi)$ of Π. In the last decade considerable progress has been made in the direction of relaxing the specialized aspects of the Picard-Loewner problem solved by Titus. We present here some current work, the precise formulation of some technical definitions and proofs have or will appear elsewhere.

1. Let M denote a smooth, compact oriented surface, possibly with boundary ∂M, and W a smooth, oriented surface without boundary, but with base point ∞. We admit smooth maps $F: M \rightarrow W$ which in the vicinity of a point $m \in M$ is locally smoothly equivalent to one of the following canonical plane maps near the origin:
```
\(m \in B\) is a branch point \(\left(w=(x+i y)^{v}, v>1\right)\) of valence \(v\),
\(m \in C\) is a fold point \(\left(w=x^{2}+i y\right)\),
\(m \in K\) is a cusp point \(\left(w=x^{3}-x y+i y\right)\),
\(m \in P=F^{-1}(\infty)\) is a simple pole point \(\left(w=(x+i y)^{-1}\right)\),
\(m \in J=\partial M\) is a border point ( \(w=x+i y, y \geqq 0\) ),
\(m \in M_{0}\) is a regular point \((w=x+i y)\).
```

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 30A48, 57D45; Secondary 53A05, 55A10, 58 C 25.

