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0. This study is addressed to the following genre of topological prob­
lems. Let n be a subset of a manifold Wand ç>:2-*II be a parametrization 
of n by a manifold collection 2 . We seek a factorization 2 -+iM-+FW9 

<p=F o /, where i is an inclusion of S in a manifold M of the same dimen­
sion as W and F is a map in a certain class, such that the invariants of 
(W, II, <p) in some reasonable sense determine (M, F, i) up to topological 
equivalence. For instance, let II be a closed, but not necessarily simply 
closed polygon in the complex plane W, 2 the extended real line and F 
a Schwarz-Christoffel transformation of the Gaussian upper half plane M9 

such that the image [cp] of (p=F\H coincides with II. Necessary and 
sufficient conditions for II to bound a conformai, or more generally, a 
holomorphic image of a disc were first given by Titus [11]. In view of the 
Stoïlow-Whyburn [16] theory, it proved more convenient to use light 
open maps F such that cp is a regular parametrization of a smooth, closed 
curve II. If the curve lies in general position, the conditions can be ex­
pressed in terms of the Whitney [14]-Titus [10] intersection sequence, 
which is a combinatorial structure on the set of signed self-intersection 
points AX99) of II. In the last decade considerable progress has been made 
in the direction of relaxing the specialized aspects of the Picard-Loewner 
problem solved by Titus. We present here some current work, the precise 
formulation of some technical definitions and proofs have or will appear 
elsewhere. 

1. Let M denote a smooth, compact oriented surface, possibly with 
boundary dM9 and W a smooth, oriented surface without boundary, but 
with base point 00. We admit smooth maps F: M->Wwhich in the vicinity 
of a point m e M is locally smoothly equivalent to one of the following 
canonical plane maps near the origin: 

m G B is a branch point (w=(x+iy)v
9 v>l) of valence v, 

m E C is a fold point (w=x2+iy), 
m G K is a cusp point (w=xs —xy+iy), 
m eP=F~1(co) is a simple pole point (w=(x+(y)_ 1), 
m G / = 3 M i s a border point (w=x+iy, J^O) , 
m G M0 is a regular point (w=x+iy). 
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