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1. Definitions. Let Va be modules over a ring k where c r=± . For a 
quadratic map Qa: V°-+Homk(r-°9 Ve) let 

U(x, y)z = Q\x + z)y - Q°(x)y - Q°(z)y = {xyz}. 

A Jordan pair over k is a pair ^ = ( F + , F~) of A:-modules together with a 
pair (Ô+, ô~) of quadratic maps Qa\ Va->Romlc{V~% Va) such that the 
identities 

(JP1) I?(x, y)Q°(x) = Q\x)l7°(y, x\ 

(JP2) I?(e*(x)j>, y) = I?(x, fi^OO*), 

(JP3) Q'(QT(x)y) = ö a W Q ^ ( y ) ö a W , 

hold in all base ring extensions. Jordan pairs have first been studied by 
K. Meyberg in [6], although not in the present form. 

A homomorphism h\if-^Hf of Jordan pairs is a pair h = (h+,h~) 
of /c-linear maps h°\V9-+W° such that haQa{x)-=Q(X{ha{x))hr\ for all 
x G V\ The opposite of if is f °P = (K-, F+) with quadratic maps ( g - , g+). 
An antihomomorphism from ^ to #^ is a homomorphism from if to 
/# / 'op. An antiautomorphism rj of y is called an involution if ^~ff^ff is 
the identity on Fff. 

2. Connections with Jordan algebras and Jordan triple systems. There 
is a one-to-one correspondence between Jordan triple systems (cf. [7]) 
and Jordan pairs with involution as follows : If r\ is an involution of the 
Jordan pair if then V+ becomes a Jordan triple system with quadratic 
operators P(x) = Q+(x)r]+. If conversely (V, P) is a Jordan triple system 
then (V, V) is a Jordan pair with Q<T(x)y=P(x)y and involution ^ = I d F . 
The structure group of the Jordan triple system is the automorphism 
group of the corresponding Jordan pair. 

Let if be a Jordan pair. An element a e V+ is called invertible if Q+(a) 
is invertible. There is a one-to-one correspondence between Jordan pairs 
containing invertible elements and isotopism classes of unital quadratic 
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