A STRUCTURE THEORY OF JORDAN PAIRS
 BY OTTMAR LOOS

Communicated by Nathan Jacobson, July 6, 1973

1. Definitions. Let V^{σ} be modules over a ring k where $\sigma= \pm$. For a quadratic map $Q^{\sigma}: V^{\sigma} \rightarrow \operatorname{Hom}_{k}\left(V^{-\sigma}, V^{\sigma}\right)$ let

$$
L^{\sigma}(x, y) z=Q^{\sigma}(x+z) y-Q^{\sigma}(x) y-Q^{\sigma}(z) y=\{x y z\} .
$$

A Jordan pair over k is a pair $\mathscr{V}=\left(V^{+}, V^{-}\right)$of k-modules together with a pair $\left(Q^{+}, Q^{-}\right)$of quadratic maps $Q^{\sigma}: V^{\sigma} \rightarrow \operatorname{Hom}_{k}\left(V^{-\sigma}, V^{\sigma}\right)$ such that the identities

$$
\begin{align*}
L^{\sigma}(x, y) Q^{\sigma}(x) & =Q^{\sigma}(x) L^{-\sigma}(y, x) \tag{JP1}\\
L^{\sigma}\left(Q^{\sigma}(x) y, y\right) & =L^{\sigma}\left(x, Q^{-\sigma}(y) x\right) \tag{JP2}\\
Q^{\sigma}\left(Q^{\sigma}(x) y\right) & =Q^{\sigma}(x) Q^{-\sigma}(y) Q^{\sigma}(x) \tag{JP3}
\end{align*}
$$

hold in all base ring extensions. Jordan pairs have first been studied by K. Meyberg in [6], although not in the present form.

A homomorphism $h: \mathscr{V} \rightarrow \mathscr{W}$ of Jordan pairs is a pair $h=\left(h^{+}, h^{-}\right)$ of k-linear maps $h^{\sigma}: V^{\sigma} \rightarrow W^{\sigma}$ such that $h^{\sigma} Q^{\sigma}(x)=Q^{\sigma}\left(h^{\sigma}(x)\right) h^{-\sigma}$, for all $x \in V^{\sigma}$. The opposite of \mathscr{V} is $\mathscr{V}^{\mathrm{op}}=\left(V^{-}, V^{+}\right)$with quadratic maps $\left(Q^{-}, Q^{+}\right)$. An antihomomorphism from \mathscr{V} to \mathscr{W} is a homomorphism from \mathscr{V} to $\mathscr{W}^{\mathrm{op}}$. An antiautomorphism η of \mathscr{V} is called an involution if $\eta^{-\sigma} \eta^{\sigma}$ is the identity on V^{σ}.
2. Connections with Jordan algebras and Jordan triple systems. There is a one-to-one correspondence between Jordan triple systems (cf. [7]) and Jordan pairs with involution as follows: If η is an involution of the Jordan pair \mathscr{V} then V^{+}becomes a Jordan triple system with quadratic operators $P(x)=Q^{+}(x) \eta^{+}$. If conversely (V, P) is a Jordan triple system then (V, V) is a Jordan pair with $Q^{\sigma}(x) y=P(x) y$ and involution $\eta^{\sigma}=\mathrm{Id}_{V}$. The structure group of the Jordan triple system is the automorphism group of the corresponding Jordan pair.

Let \mathscr{V} be a Jordan pair. An element $a \in V^{+}$is called invertible if $Q^{+}(a)$ is invertible. There is a one-to-one correspondence between Jordan pairs containing invertible elements and isotopism classes of unital quadratic

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 17C10, 17C20.
 Key words and phrases. Jordan pair, Jordan algebra, alternative pair, inner ideals, chain condition, classification.

