A DEGREE FOR NONACYCLIC MULTIPLE-VALUED TRANSFORMATIONS

BY D. G. BOURGIN

Communicated by Mary Ellen Rudin, July 2, 1973

The objective of this note is the definition of a degree generalizing that of Leray-Schauder [1] for certain possibly nonacyclic set-valued compact transformations of a ball in an arbitrary Banach space. The degree definition achieved extends that of [3] and depends on the material in [2], [3], [4] and [5]. It is new even for the finite-dimensional case.

Let *E* be a Banach space. Write *D* for the closure of a convex open set and \dot{D} for its boundary. Denote by E_N an *N*-dimensional subspace of *E* and by D_N and \dot{D}_N the intersections $E_N \cap D$ and $E_N \cap \dot{D}$, respectively. (We tacitly assume *E* is infinite dimensional but the finite-dimensional consequences amount to identification of *E* and some E_N .)

The symbol F refers to a transformation $F: D \to E$ which is upper semicontinuous, takes points into closed sets, and is compact in the sense that cl(F(D)) is compact. Finally, for every closed set K, $F^{-1}(K)$ is required to be closed. Among other consequences, the graph $\Gamma(F)$ is closed where $\Gamma(F) = \{(x, y) | y \in F(x), x \in D\} \subset D \times C$, C compact}. We write $\Gamma(F_N)$ and $\Gamma(F_N)$ for the corresponding graphs when D is replaced by D_N or D_N . A fixed point \bar{x} of F satisfies $\bar{x} \in F(\bar{x})$.

Denote the *r*-dimensional singular set by $\sigma_r = \{x | H^r F(x) \neq 0\}$ where the cohomology groups are assumed to be the Alexander Spanier reduced groups with integer coefficients. The total singular set is denoted by $\sigma = \bigcup_r \sigma_r$.

Let p denote the effective bound for nonacyclicity, namely

$$p = 1 + \sup_{r} \{r + \dim \sigma_r \mid \sigma_r \neq \varnothing\},\$$

where dim σ_r is the maximum covering dimension for finite covers of subsets of σ_r which are closed in D.

The transformation F is *admissible* if, besides the earlier restrictions, (a) F is fixed point free on \dot{D} , (b) $\sigma_r = \emptyset$ except for a finite set of indices, (c) σ_r is contained in a finite subspace E_S , and (d) for $x \in \sigma$, $H^*F(x)$ is

AMS (MOS) subject classifications (1970). Primary 47H10, 54C60, 54H25.

Key words and phrases. Set valued transformations, Leray-Schauder degree, Banach space, Alexander cohomology.