THE SINGULARITIES OF THE \mathscr{G} -MATRIX AND GREEN'S FUNCTION ASSOCIATED WITH PERTURBATIONS OF $-\Delta$ ACTING IN A CYLINDER

BY CHARLES I. GOLDSTEIN¹ Communicated by Murray Protter, April 3, 1973

It is the purpose of this note to study the singularities of the \mathscr{S} -matrix and Green's function associated with the operators considered in [1]–[3]. As will be seen, there are a countable number of branch points, as well as a countable number of different \mathscr{S} -matrices associated with these operators. In this respect, these results differ considerably from those drawn from quantum mechanical scattering² and the exterior problem (see e.g. [4] and [5]).

1. **Preliminaries.** Let S denote the semi-infinite cylinder in \mathbb{R}^N , N-dimensional Euclidean space $(N \ge 2)$, with arbitrary bounded, smooth N-1 dimensional cross-section l. Thus S consists of the points $x = ((x_1, \ldots, x_{N-1}), x_N) = (\tilde{x}, x_N)$, where $\tilde{x} \in l$ and $x_N \ge 0.^3$ Let Ω denote the domain with smooth boundary $\dot{\Omega}$, obtained from S by perturbing a finite part of \dot{S} . Thus $\Omega = S$ for $x_N \ge \hat{x}_N$ for some fixed $\hat{x}_N > 0$.

We now define the operators $A_0(A)$ by $-\Delta$ acting in $L_2(S)$ $(L_2(\Omega))$ and associated with zero Dirichlet boundary conditions on $\dot{S}(\dot{\Omega})$. Let A_l denote the corresponding operator defined in $L_2(l)$ and let $\{v_n\}$ and $\eta_n(\tilde{x})$ denote a complete set of eigenvalues (in increasing order) and corresponding orthonormal eigenfunctions for A_l . Let A^c denote that part of A orthogonal to all of its eigenvalues, Λ denote the set of eigenvalues of A and $\Lambda' = \Lambda \cup \{v_n\}$.

It was shown in [1] that a complete set of generalized eigenfunctions for A_0 and A^c are given by

$$w_n^0(x;\lambda) = (2/\pi)^{1/2} \sin(\lambda - \nu_n)^{1/2} x_N \eta_n(\tilde{x}), \qquad \lambda \notin \{\nu_n\},$$

AMS (MOS) subject classifications (1970). Primary 35J05, 35J10, 47A40, 78A50.

Key words and phrases. Singularities of the \mathscr{G} -matrix, Green's function, waveguides, infinitely sheeted Riemann surface, analytic and meromorphic continuation, radiation condition, resonant state.

¹ Work performed under the joint auspices of the Atomic Energy Commission and the Mathematics Research Center at the University of Wisconsin.

² Our results are related to wave progagation in a waveguide.

³ We might just as easily consider the infinite cylinder, $S' = (x = (\tilde{x}, x_N) | \tilde{x} \in l, -\infty < x_N < \infty)$.