ON FOURIER COEFFICIENTS OF SIEGEL MODULAR FORMS OF DEGREE TWO

BY ERIK A. LIPPA ${ }^{1}$
Communicated by Olga Taussky Todd, March 12, 1973

Abstract

Siegel modular forms f of degree two are considered which satisfy: (1) the Fourier coefficients $b_{f}(R)$, for R a positive definite, semi-integral, primitive matrix, are solely a function of $\operatorname{det}(R)$; and (2) f is an eigenform for the Hecke algebra whose eigenvalues satisfy certain relationships. For such forms, results about multiplicative relationships and asymptotic growth are given, and formulae are given for $b_{f}(R)$ with R arbitrary in terms of $b_{f}(T)$ with $\operatorname{det}(2 T)$ squarefree.

Hecke operators play a vital role in investigating multiplicative relations among Fourier coefficients of modular forms of one complex variable. In this paper, we show that, for a certain class of Siegel modular forms of degree two, Hecke operators play a similar role in determining relations among Fourier coefficients.

Let $f(Z)$ be a Siegel modular form of degree two and weight w. Then $f(Z)$ has a Fourier expansion of the form $f(Z)=\sum_{R \geqq 0} b_{f}(R) e(R Z)$, where Z is a point in the Siegel upper half plane of degree two, R runs through all positive semidefinite, semi-integral 2×2 matrices, and $e(R Z)=$ $\exp [2 \pi i \cdot \operatorname{Trace}(R Z)]$. If $R=\left(\begin{array}{cc}a & b \\ b & c\end{array}\right)$, with $a, c, 2 b$ integers, then we set $\operatorname{gcd}(R)=\operatorname{gcd}(a, c, 2 b)$. We will denote the determinant of a matrix A by $|A|$.

We now define the Hecke operators (degree two) on the space \mathscr{F}_{w} of all Siegel modular forms of degree two and weight w. Let

$$
J=\left(\begin{array}{cc}
0 & I_{2} \\
-I_{2} & 0
\end{array}\right), \quad \mathscr{L}(n)=\left\{M \in G L(4, Z): M^{t} J M=n J\right\} .
$$

For f in \mathscr{F}_{w}, n a positive integer, and M in $\mathscr{L}(n)$, we write M in blocks of 2×2 matrices as $M=\left(\begin{array}{cc}A & B \\ C\end{array}\right)$ and define

$$
\left(\left.f\right|_{M}\right)(Z)=|M|^{w / 2}|C Z+D|^{-w} f\left[(A Z+B)(C Z+D)^{-1}\right] .
$$

Noting that one can write $\mathscr{L}(n)=\bigcup_{A} \mathscr{L}(1) A$, a finite, disjoint union, we define the unnormalized Hecke operator $T(n): \mathscr{F}_{w} \rightarrow \mathscr{F}_{w}$ as $\left.f\right|_{T(n)}=\left.\sum_{A} f\right|_{A}$.

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 10D20, 32N15, 42A16.
 ${ }^{1}$ The main body of this work was carried out at Oxford University under a NATO Postdoctoral Fellowship.

