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1. Introduction. The purpose of this note is to announce some results 
regarding the relationship between principal ideal domains and euclidean 
domains which are subrings of global fields. 

Let A be an integral domain. We shall say that A is a euclidean ring, or 
simply "A is euclidean", if there exists a map q>\A — {0} -• N9 N the 
nonnegative integers, satisfying the following two properties: 

(1) Iîa,beA - {0}, then cp(ab) ^ cp(a). 
(2) If a, b G A, b # 0, then there exists q, r e A such that a = bq + r, 

where r = 0 or q>(r) < cp(b). 
It is easy to see that condition (1) is an unnecessary restriction; i.e. 

if there is a map cp: A — {0} -• TV satisfying only condition (2), then there 
is always another map cp', derived from </>, such that cp' satisfies both (1) 
and (2). Further, it is apparently unknown whether one enlarges the class 
of euclidean integral domains by enlarging N to a well-ordered set of 
arbitrary cardinality, but this question will not concern us here except to 
say that whenever A has finite residue classes, i.e., A modulo any nonzero 
ideal is finite, then insisting on TV as a set of values is no restriction. We 
refer the reader to an excellent paper by P. Samuel [7] in which all of the 
above and much more is exposed with great clarity. 

Let A be as above. We define subsets An of A for n e N by induction as 
follows: A0 = {0} and if « ^ 1, then ,4; = [Ja<nAa.FimA\yAn = {b e A\ 
there is a representative in A'n of every residue class of A modulo bA}. 
Setting A' = [jneN An, A is euclidean if and only if A' = A (see Motzkin 
[4]). Further when A' = A we get a map (p:A — {0} -• N, where if 
x e A — {0} then there exists a unique n ^ 0 such that xe An+l — An 

and q>(x) = n. Now not only does cp satisfy conditions (1) and (2) above, 
but if cp' is any other map satisfying condition (2), then cp(x) ^ cp'(x) for all 
xeA — {0}. Hence Motzkin justifiably calls cp the minimal algorithm for 
A. 

Let F be a global field; F is a finite extension of the rational numbers Q, 
or F is a function field of one variable over a finite field. Let 5 be a non­
empty finite set of prime divisors of F such that S contains all infinite (i.e. 
archimedean) prime divisors. For each finite (i.e. nonarchimedean) prime 
divisor P we denote by 0P the valuation ring associated to P in F . Letting 
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