# ASYMPTOTIC THEOREMS FOR SUMS OF INDEPENDENT RANDOM VARIABLES DEFINED ON A TREE ${ }^{1}$ 

BY A. JOFFE AND A. R. MONCAYO<br>Communicated by Gian-Carlo Rota, December 18, 1972

The study of sums of independent random variables defined on a tree has not been treated systematically in the literature, except for the random tree generated by a Galton-Watson process (cf. [1], [4], [5]) and for the binary tree (cf. [3]). The purpose of this short note is to announce a generalization of the results of the above papers.

1. A tree $\mathscr{T}$ will be here a collection of sequences $\tau=\left(i_{1} \cdots i_{k} \cdots\right)$ where the $i_{j}$ are nonnegative integers such that
(a) if $i_{l}=0$, then $i_{k}=0$ for all $k>l$.
(b) $i_{1}=1 \cdots Z_{1}$.
(c) for $k>1$, $i_{k}=1 \cdots Z_{i_{1} \cdots i_{k-1}}$ or $0, \sum_{i_{1} \cdots i_{k-1}} Z_{i_{1} \cdots i_{k-1}}=Z_{k}$. We require $Z_{k} \geqq 1$.

Given a tree $\mathscr{T}$, we define $\mathscr{T}_{k}$, the family of size $k$ of $\mathscr{T}$, to be the set of finite sequences $\tau_{k}=\left(i_{1} \cdots i_{k}\right)$ of length $k$ which are the beginning of a sequence of the tree such that $i_{k} \neq 0$. The cardinality of $\mathscr{T}_{k}$ is $Z_{k}$. We denote by $\alpha(n, k)$ the number of ordered pairs of the path of $\mathscr{T}_{n}$ which have exactly in common an initial path of length $k$. Let $p_{n, k}=\alpha(n, k) / Z_{n}^{2}$; we say that the tree is regular if $\lim _{n \rightarrow \infty} p_{n, k}=p_{k}$ exists with $\sum_{k} p_{k}=1$. Let $g$ be a nonnegative nondecreasing function defined on the integers.
(a) We say that the tree $\mathscr{T}$ is $g$-regular if it is regular and if

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} g(k) p(n, k)=\sum_{k=0}^{\infty} g(k) p_{k}<\infty .
$$

(b) We say that the tree $\mathscr{T}$ is weakly $g$-regular if

$$
\sup _{n} \sum_{k=0}^{n} g(k) p(n, k)<\infty
$$

We consider a family of independent identically distributed random variables $X_{\tau_{k}}$ indexed by $\bigcup_{k=1}^{\infty} \mathscr{T}_{k}$. To simplify notations and the statement of the theorems we assume the $X$ 's to have mean 0 and variance 1 . At each path $\tau_{n}=\left(i_{1} \cdots i_{n}\right)$ we associate the random variables

[^0]
[^0]:    AMS (MOS) subject classifications (1970). Primary 60B10, 60J80.
    Key words and phrases. Sums of independent random variables, trees, Galton-Watson.
    ${ }^{1}$ This research was supported by CIMASS (UNAM) and the Canadian National Research Council.

