FUNCTIONAL ANALYSIS AND NONLINEAR DIFFERENTIAL EQUATIONS ${ }^{1}$

BY L. CESARI AND R. KANNAN
Communicated by Frederick Gehring, June 12, 1973

1. The aim of this paper is to study the nonlinear differential equation

$$
\begin{equation*}
E x=N x \tag{1}
\end{equation*}
$$

where N is a nonlinear operator in a real Hilbert space S, and E is a linear differential operator in S with preassigned linear homogeneous boundary conditions. The idea is to reduce the problem to a finite dimensional setting and this technique has been used by several authors. We use here a method due to Cesari [4]. This method has been extensively developed in the existence analysis of differential equations by Cesari, Hale, Locker, Mawhin and others. For a detailed bibliography one is referred to Cesari [5].

In this paper, by applying results from the theory of monotone operators, we show that, under suitable monotonicity hypotheses on N, the equation $E x=N x$ can be solved. In the present short presentation we restrict ourselves to the simplest hypotheses on E, N and S, even though the results obtained here hold under more general conditions.
2. Let S be the direct sum of the subspaces S_{0} and S_{1} and let $P: S \rightarrow S_{0}$ be a projection operator with null space S_{1}, and $H: S_{1} \rightarrow S_{1}$ a linear operator such that $\left(\mathrm{h}_{1}\right) H(I-P) E x=(I-P) x, x$ belonging to the domain of E. If y is a solution of (1), then $E y=N y$ implies $H(I-P) E y=$ $H(I-P) N y$. Hence, $(I-P) y=H(I-P) N y$; and finally

$$
\begin{equation*}
y=P y+H(I-P) N y . \tag{2}
\end{equation*}
$$

Thus, any solution of (1) is a solution of (2). If we also have that $\left(\mathrm{h}_{2}\right) E P x=P E x$ and $\left(\mathrm{h}_{3}\right) E H(I-P) N x=(I-P) N x$, then from (2) we derive

$$
E y=E P y+E H(I-P) N y=P E y+(I-P) N y .
$$

Hence, $E y-N y=P(E y-N y)$. Thus, any solution y of (2) is a solution of (1) if and only if y satisfies

$$
\begin{equation*}
P(E y-N y)=0 . \tag{3}
\end{equation*}
$$

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 47H15.
 ${ }^{1}$ Part of the work was done when the second author was visiting the University of Michigan, in the frame of US-AFOSR Project 71-2122.

