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1. The aim of this paper is to study the nonlinear differential equation 

(1) Ex = Nx 

where AT is a nonlinear operator in a real Hubert space S, and £ is a linear 
differential operator in S with preassigned linear homogeneous boundary 
conditions. The idea is to reduce the problem to a finite dimensional 
setting and this technique has been used by several authors. We use here 
a method due to Cesari [4]. This method has been extensively developed 
in the existence analysis of differential equations by Cesari, Hale, Locker, 
Mawhin and others. For a detailed bibliography one is referred to 
Cesari [5]. 

In this paper, by applying results from the theory of monotone 
operators, we show that, under suitable monotonicity hypotheses on N, 
the equation Ex = Nx can be solved. In the present short presentation 
we restrict ourselves to the simplest hypotheses on E9 N and S, even 
though the results obtained here hold under more general conditions. 

2. Let S be the direct sum of the subspaces S0 and St and let P:S -> S0 

be a projection operator with null space Sl9 and H:Sl -* Sx a linear 
operator such that ( h j H(I - P)Ex = (I - P)x, x belonging to the 
domain oî E.If y is a solution of (1), then Ey = Ny implies H(I — P)Ey = 
H(I - P)Ny. Hence, (/ - P)y = H(I - P)Ny; and finally 

(2) y = Py + H(I - P)Ny. 

Thus, any solution of (1) is a solution of (2). If we also have that 
(h2) EPx = PEx and (h3) EH{I - P)Nx = {I - P)Nx, then from (2) we 
derive 

Ey = EPy + EH(I - P)Ny = PEy + (I - P)Ny. 

Hence, Ey — Ny = P(Ey — Ny). Thus, any solution y of (2) is a solution 
of (1) if and only if y satisfies 

(3) P(Ey - Ny) = 0. 
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