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ADDITIVE GROUP THEORY—A PROGRESS REPORT 

BY HENRY MANN 

The first theorem in additive group theory was proved by Cauchy [2] 
in 1813. 

THEOREM OF CAUCHY. If A and B are residues mod p and A + B = 
{x:x = a + b,ae A,b e B} then either A + B = G or 

(1) \A + B\^ \A\ + |£| - 1. 

(Here \S\ denotes the cardinal of the set S.) 

This theorem was rediscovered by Davenport [5], [6] and is now known 
as [21] the Cauchy-Davenport theorem. Cauchy used it to show that 
every residue mod (p) is a sum of two squares i.e. the congruence 

(2) x2 + j , * s r ( p ) 

is solvable for every r. One easily obtains this result by setting 
A = B = {x:x = a2(p)}. We then have \A\ = \B\ = (p + l)/2 and (2) 
follows from (1). Applying the C.-D. theorem to the representation of 
residues by sums of fcth powers one may without loss of generality restrict 
k to divisors of (p — 1). The C.-D. theorem then gives the result that 
every residue is a sum of not more than k kth powers. A considerable 
improvement is possible if one excludes the value k = (p — l)/2. G. A. 
Vosper [30], [31], [21] refined the C.-D. theorem by completely charac
terizing those pairs A, B for which 

\A + B\ = \A\ + |B| - 1. 

Using Vosper's result one can show [4], [21]: If al9 . . . , an are non-0 
residues mod p and if n ^ (k + l)/2 then the congruence 

(3) axx\ + • • • + anx
k
n = r (p) 

is solvable for every r provided that k < (p — l)/2. 
This result was extended to finite fields of order q = pd by Tietâvâinen 

[29] under the assumptions k < (q - l)/2, (q - l)/k)(pv - 1 for 
0 < v < d. Tietavainen's proof requires a result of Kempermann [13] on 
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