BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 79, Number 5, September 1973

SMOOTH S¹ ACTIONS AND BILINEAR FORMS¹

BY TED PETRIE

Communicated by Glen Bredon, March 12, 1973

Let S^1 denote the multiplicative group of complex numbers of norm 1. Let X denote a smooth S^1 manifold, i.e., X consists of an underlying smooth manifold denoted by |X| together with a smooth action of S^1 . The equivariant complex K theory of X is $K_{S^1}^*(X) = K_{S^1}^0(X) \bigoplus K_{S^1}^1(X)$. It is a module over $R(S^1)$ the complex representation ring of S^1 . This is the ring $Z[t, t^{-1}]$. For our purposes there are two important sets of prime ideals in $Z[t, t^{-1}]$:

(i) the set P_1 consisting of the principal ideals of the form $\mathfrak{p} = (\Phi_{pr}(t))$ generated by the cyclotomic polynomial $\Phi_{pr}(t)$ associated to the prime power p^r , i.e., $P_1 = \{(\Phi_{pr}(t)) \mid \forall \text{ primes } p \text{ and integers } r\}$.

(ii) the set $P = \{(\Phi_m(t)) \mid \forall \text{ positive integers } m\}$.

The localized ring $R(S^1)_P$ is denoted by R. It is the subring of the field of fractions of $R(S^1)$ consisting of fractions a/b with b prime to all the ideals of P. Let $K_{S^1}^*(X)_P = K_{S^1}^*(X) \otimes_{R(S^1)} R$. The Atiyah-Singer index homomorphism [1] $\mathrm{Id}_{S^1}^*: K_{S^1}^0(TX) \to R(S^1)$ induces a homomorphism

$$\mathrm{Id}^X: K^0_{S^1}(TX)_P \to R.$$

Here TX is the tangent bundle of X and |X| is compact without boundary. Suppose that |X| is a spin^c manifold. Then there is an isomorphism

$$K_{S^1}^*(X)_P \xrightarrow{\Delta^X} K_{S^1}^*(TX)_P$$

of R modules [6] and we can define an R valued bilinear form $\langle \rangle_X$ on $K_{S^1}(X)_p$ by

$$\langle a, b \rangle_{X} = \mathrm{Id}^{X}(\Delta^{X}(a) \cdot b)$$

THEOREM 1 [2]. The bilinear form $\langle \rangle_X$ is nonsingular, i.e., the associated homomorphism

$$K_{S^1}^*(X)_P \xrightarrow{\Phi^A} \operatorname{Hom}_R(K_{S^1}^*(X)_P, R)$$

is surjective where $\Phi^{\mathbf{X}}(a)[b] = \langle a, b \rangle_{\mathbf{X}}$.

This result was conjectured in a similar form in [6].

A useful consequence of Theorem 1 is this: Set $K_{S^1}^*(X) = K_{S^1}^*(X)_P/T_X$ where T_X denotes the R torsion subgroup of $K_{S^1}^*(X)_P$. The bilinear form

AMS (MOS) subject classifications (1970). Primary 57E15, 57D99.

¹ Partially supported by N.S.F. grant.