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Let S1 denote the multiplicative group of complex numbers of norm 1. 
Let X denote a smooth S1 manifold, i.e., X consists of an underlying 
smooth manifold denoted by \X\ together with a smooth action of S1. 
The equivariant complex K theory of X is K&(X) = K%i(X) 0 K^(X). 
It is a module over RiS1) the complex representation ring of S1. This is 
the ring Z[t, f " 1 ] . For our purposes there are two important sets of 
prime ideals in Z[f, t " 1 ] : 

(i) the set Px consisting of the principal ideals of the form p = (<f>pr(t)) 
generated by the cyclotomic polynomial $>pr(t) associated to the prime 
power p\ i.e., Px = {(Opr(f)) | V primes p and integers r}. 

(ii) the set P = {(Om(0) | V positive integers m}. 
The localized ring RiS^p is denoted by R. It is the subring of the field of 
fractions of R(SX) consisting of fractions a/b with b prime to all the ideals of 
P. Let X|i(X)p = K$i(X) ®R(Si) R- The Atiyah-Singer index homo-
morphism [1] Idfi :K°i(TX) -> R(SX) induces a homomorphism 

Id*:Kgi(TX)P-> R. 

Here TX is the tangent bundle of X and \X\ is compact without boundary. 
Suppose that |X| is a spinc manifold. Then there is an isomorphism 

K*l(X)p ^U Kl(TX)P 

of R modules [6] and we can define an R valued bilinear form < } x on 

<*,*>>* = Idx(A*(a)-b). 

THEOREM 1 [2]. The bilinear form < yx is nonsingular, i.e., the associated 
homomorphism 

KUX)P - ^ HomR(X?i(JT)P, R) 

is surjective where <ï>x(a)[è] = <a, byx. 

This result was conjectured in a similar form in [6]. 
A useful consequence of Theorem 1 is this: Set K%i(X) = K$i(X)P/Tx 

where Tx denotes the R torsion subgroup of K$i(X)P. The bilinear form 
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