FUNDAMENTAL GROUPS, NILMANIFOLDS AND ITERATED INTEGRALS ${ }^{1}$

BY KUO-TSAI CHEN

Communicated by S. S. Chern, January 20, 1973

Let X be a connected C^{∞} manifold. Denote by $P(X)$ the total space of piecewise smooth paths in X. Choose a base point x_{0}. Denote by $P\left(X ; x_{0}\right)$ (resp. $\left.\Omega X\right)$ the space of piecewise smooth paths (resp. loops) from the base point x_{0}.

Let k be the field of real (or complex) numbers. All differential forms are k-valued. Let w_{1}, w_{2}, \ldots denote 1 -forms on X. For a piecewise smooth path $\alpha: I \rightarrow X$, let $f_{i}(t)=w_{i}(\alpha(t), \dot{\alpha}(t))$ be the value of the 1 -form w_{i} at the tangent vector $\dot{\alpha}(t)$ of X. Define the r-time iterated integral $\int w_{1} \cdots w_{r}$ to be the k-valued function on $P(X)$ whose value at α is given by

$$
\left\langle\int w_{1} \cdots w_{r}, \alpha\right\rangle=\int_{0}^{1} \int_{0}^{t_{r}} \cdots \int_{0}^{t_{2}} f_{1}\left(t_{1}\right) d t_{1} \cdots f_{r-1}\left(t_{r-1}\right) d t_{r-1} f_{r}\left(t_{r}\right) d t_{r}
$$

when $r>0$ and $=1$ when $r=0$. At times, we shall also take $\int w_{1} \cdots w_{r}$ as its restriction on ΩX or $P\left(X ; x_{0}\right)$.

Let F be the function algebra on $P(X)$ consisting of those functions whose value at each path α remains invariant under any piecewise smooth homotopy of α relative to \dot{I}. In this note, we shall consider the subspace of F whose elements are linear combinations of iterated integrals. A characterization of this subspace in terms of the fundamental group $\pi_{1}(X)$ will be given.

We begin with a differential graded subalgebra A of the exterior algebra $\Lambda(X)$. The following assumptions are made:
I. $d A^{0}=A^{1} \cap d \Lambda^{0}(X)$.
II. $\operatorname{dim} H^{1}(A)<\infty$.
III. The canonical homomorphism $H^{q}(A) \rightarrow H^{q}(X ; k)$ is an isomorphism when $q=1$ and is a monomorphism when $q=2$.

A primary example is the case of $A=\Lambda(X)$.
For $s \geqq 0$, denote by $F_{A}(s)$ the subspace of F whose elements are linear combinations of iterated integrals of the type

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 58A99; Secondary 49F05, 53C65.
 Key words and phrases. Iterated integrals, path spaces, fundamental groups, differential forms, nilpotent Lie groups, nilmanifolds.
 ${ }^{1}$ Work supported in part by the National Science Foundation under NSF-GP-34257.

