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It is well known and easy that if C is a small category with filtered 
components, then the functor colim c :Ab c -» Ab is exact. The converse 
was conjectured and proved in a special case by Oberst [4]. A necessary 
and sufficient condition for exactness of colimc was given by Isbell in [2], 
who used the condition to show that Oberst's conjecture is true when C 
is a monoid. We show that the conjecture is false in general. Proofs will 
only be sketched here, full details to appear elsewhere. 

1. Afflnization. If A and B are objects of C, then A maps to B if C(A, B) 
is nonempty. If a{ is a family of C(A, B), then ft filters the family if /to^ is 
independent of i. A category C is filtered if every pair (and hence every 
finite family) of objects map to a common object, and every pair (and 
hence every finite family) of morphisms with common domain and 
codomain are filtered. 

The additivization of C is the category ZC with the same objects, where 
ZC(A, B) is the free abelian group on C(A, B). The ajfinization of C is the 
subcategory of ZC of morphisms whose integer coefficients sum to one. 
Note that C c aff C, with equality if and only if C is a preordered set. 

If M G Ab c , then colimc M = ®Ae\c\ M(A)/X where X is the subgroup 
of the numerator generated by elements of the form x — ax with, say, 
xeM(A), aeC(A,B), and hence axeM(B). Note that if £ n^ is a 
morphism of aff C, then 

* - (E niai)x = E ni(x - ai-x)> 

and it follows that if M is considered as an object of Abaff c in the obvious 
way, then colimc M = colimaff c M. This yields easily the "if' part of the 
following theorem, which is close to being a restatement of [2, Theorem 1]. 

THEOREM 1. Colimc is exact if and only if the components of aff C are 
filtered. 

The converse is an application of the "several object" version of ring 
theory [3]. We express the colimit - a s colimc M = AZ ® z c M where 
AZ is the constant functor at Z over Cop. Then exactness of colimc is 
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