ENERGY DECAYS LOCALLY EVEN IF TOTAL ENERGY GROWS ALGEBRAICALLY WITH TIME

BY CLIFFORD O. BLOOM AND NICHOLAS D. KAZARINOFF Communicated by Cathleen Morawetz, February 13, 1973

0. Introduction. In this note we announce energy decays locally like $t^{-2+\kappa}$ for solutions of hyperbolic equations, with coefficients that depend upon both position and time, in the exterior of star-shaped domains in \mathbb{R}^3 . Here κ is a positive constant, depending on the coefficients, defined explicitly by (8) below. Our results generalize those of Zachmanoglou [4]. He considered a class of equations with time-independent coefficients (see (12) below) and proved under hypotheses roughly analogous to ours that in \mathbb{R}^n ($n \ge 3$) energy decays locally like $t^{-1+\mu}$ ($1 > \mu \ge 0$). A more important difference between the equations we consider here and those considered by Zachmanoglou in [4] is that we treat equations with solutions whose total energy may grow algebraically with t while the total energy of solutions of the equations with bounded total energy decays locally like t^{-2} , but under more stringent hypotheses than those used here.

We now set the scattering problem whose solutions we investigate. Let V be the exterior of a closed, bounded subset B of \mathbb{R}^3 , and let n be the outward unit normal to ∂B . We assume that the origin lies interior to B and that $\partial V \equiv \partial B$ is star-shaped:

(1)
$$\min_{x\in\partial V}\frac{n\cdot x}{r}\geq 0,$$

where $x = (x_1, x_2, x_3)$ and $r^2 = x \cdot x$. Let $Q = (V \cup \partial V) \times [0, \infty)$. We use the notation $\nabla^{(3)} = (\partial/\partial x_1, \partial/\partial x_2, \partial/\partial x_3), \nabla = (\nabla^{(3)}, \partial/\partial t)$. We take as given a symmetric 3 × 3 matrix $E, 1 \times 3$ matrices a and b, and functions c and d which satisfy the following hypothesis:

(Hypothesis H₁) (a) b, c, and E are in $C^1(Q)$; a and d are in $C^2(Q)$, (b) for some $d_0 > 0$, $d(x, t) \ge d_0$ if $(x, t) \in Q$.

Let the transpose of a matrix M (or m) be M^T (or m^T). We suppose that E is uniformly elliptic in Q, namely that there exist positive constants c_0 and

AMS (MOS) subject classifications (1970). Primary 35B05, 35L10. 78A45; Secondary 35P25, 78A05.

Key words and phrases. Energy decay, star-shaped obstacle, second order hyperbolic equations, variable coefficients, divergence identity.