ESTIMATES FOR WEAK-TYPE OPERATORS

BY COLIN BENNETT

Communicated by E. M. Stein, February 16, 1973

1. **Introduction.** When f is an integrable function on the interval [0, 1], we denote by f^* its nonincreasing rearrangement and by f^{**} the average $f^{**}(t) = (1/t) \int_0^t f^*(s) ds$. The Lorentz space L^{pq} , $1 \le p \le \infty$, $1 \le q \le \infty$ consists of all functions f for which the norm

$$||f|| = \left\{ \int_0^1 \left[t^{1/p} f^{**}(t) \right]^q \frac{dt}{t} \right\}^{1/q}$$

is finite; the Lorentz space L^{pq} is defined in the same way except that f^{**} is replaced by f^* . When $1 , <math>L^{pq}$ and $L^{(pq)}$ coincide, up to equivalence of (quasi) norms (cf. [3], [4]). The spaces L^{pq} , $1 , are the intermediate spaces <math>(L^1, L^{\infty})_{\theta,q;K}$, $\theta = 1 - 1/p$, generated by the K-method of J. Peetre (cf. [2], [5], [7]). Note that $L^{(1\infty)}$ is the space usually referred to as "weak- L^1 " and that the Orlicz space $L \log^+ L$ of functions f for which $|f| \log^+ |f|$ is integrable, is (cf. [1]) none other than the Lorentz space $L^{(1)}$. Thus

$$L \log^+ L = L^{11} \subseteq L^{1\infty} = L^1 = L^{(11)} \subseteq L^{(1\infty)} = \text{weak-}L^1.$$

From characterizations of the intermediate spaces $(L \log^+ L, L^1)_{\theta,q;K}$ and $(L^1, \operatorname{weak-}L^1)_{\theta,q;K}$ obtained by the author in [1] and subsequently, there follow some new estimates for weak-type operators. In particular, we obtain a sharper form of a theorem of O'Neil [6] concerning operators that are simultaneously of weak-types (1, 1) and (p, p), 1 .

2. Intermediate spaces between $L \log^+ L$ and L^1 . The space of functions f for which the norm

$$||f|| = \left\{ \int_0^1 \left[t \left(\log \frac{1}{t} \right)^{\theta - 1/q} f^{**}(t) \right]^q \frac{dt}{t} \right\}^{1/q}$$

is finite, will be denoted by $A^{\theta q}$, $0 < \theta < 1$, $1 \le q \le \infty$. The corresponding space with f^{**} replaced by f^{*} in the previous definition, is denoted by $A^{(\theta q)}$. The following results were obtained by the author in $\lceil 1 \rceil$:

Theorem 1.
$$(L^1, L \log^+ L)_{\theta,q;K} = A^{\theta q}, 0 < \theta < 1, 1 \leq q \leq \infty$$
.

Corollary 1.1.
$$(L^1, L \log^+ L)_{\theta, 1:K} = L(\log^+ L)^{\theta}, 0 < \theta < 1.$$

AMS (MOS) subject classifications (1970). Primary 46E30, 46E35.