ESTIMATES FOR WEAK-TYPE OPERATORS

BY COLIN BENNETT
Communicated by E. M. Stein, February 16, 1973

1. Introduction. When f is an integrable function on the interval $[0,1]$, we denote by f^{*} its nonincreasing rearrangement and by $f^{* *}$ the average $f^{* *}(t)=(1 / t) \int_{0}^{t} f^{*}(s) d s$. The Lorentz space $L^{p q}, 1 \leqq p \leqq \infty$, $1 \leqq q \leqq \infty$ consists of all functions f for which the norm

$$
\|f\|=\left\{\int_{0}^{1}\left[t^{1 / p} f^{* *}(t)\right]^{q} \frac{d t}{t}\right\}^{1 / q}
$$

is finite; the Lorentz space $L^{(p q)}$ is defined in the same way except that $f^{* *}$ is replaced by f^{*}. When $1<p \leqq \infty, L^{p q}$ and $L^{(p q)}$ coincide, up to equivalence of (quasi) norms (cf. [3], [4]). The spaces $L^{p q}, 1<p<\infty$, are the intermediate spaces $\left(L^{1}, L^{\infty}\right)_{\theta, q ; K}, \theta=1-1 / p$, generated by the K-method of J. Peetre (cf. [2], [5], [7]). Note that $L^{(1 \infty)}$ is the space usually referred to as "weak- L^{1} " and that the Orlicz space $L \log ^{+} L$ of functions f for which $|f| \log ^{+}|f|$ is integrable, is (cf. [1]) none other than the Lorentz space L^{11}. Thus

$$
L \log ^{+} L=L^{11} \subseteq L^{1 \infty}=L^{1}=L^{(11)} \subseteq L^{(1 \infty)}=\text { weak- } L^{1}
$$

From characterizations of the intermediate spaces $\left(L \log ^{+} L, L^{1}\right)_{\theta, q ; K}$ and (L^{1}, weak- $\left.L^{1}\right)_{\theta, q ; K}$ obtained by the author in [1] and subsequently, there follow some new estimates for weak-type operators. In particular, we obtain a sharper form of a theorem of O'Neil [6] concerning operators that are simultaneously of weak-types $(1,1)$ and $(p, p), 1<p \leqq \infty$.
2. Intermediate spaces between $L \log ^{+} L$ and L^{1}. The space of functions f for which the norm

$$
\|f\|=\left\{\int_{0}^{1}\left[t\left(\log \frac{1}{t}\right)^{\theta-1 / q} f^{* *}(t)\right]^{a} \frac{d t}{t}\right\}^{1 / q}
$$

is finite, will be denoted by $A^{\theta q}, 0<\theta<1,1 \leqq q \leqq \infty$. The corresponding space with $f^{* *}$ replaced by f^{*} in the previous definition, is denoted by $A^{(\theta q)}$. The following results were obtained by the author in [1]:

Theorem 1. $\left(L^{1}, L \log ^{+} L\right)_{\theta, q ; K}=A^{\theta q}, 0<\theta<1,1 \leqq q \leqq \infty$.
Corollary 1.1. $\left(L^{1}, L \log ^{+} L\right)_{\theta, 1 ; K}=L\left(\log ^{+} L\right)^{\theta}, 0<\theta<1$.
AMS (MOS) subject classifications (1970). Primary 46E30, 46E35.

