AN EQUIVARIANT VERSION OF GROMOV'S THEOREM

BY EDWARD BIERSTONE¹ Communicated by Gian-Carlo Rota, January 22, 1973

In this note we announce an equivariant version of the theorem of Gromov [2], [3], [7] concerning the classification of smooth sections of a differentiable fibre bundle whose *r*-jets satisfy an "intrinsic differential inequality". The development of Gromov's theorem began with the Smale-Hirsch theory of immersions [8], [5], which was clarified and generalized by Phillips [6], Haefliger and Poenaru [4] and Gromov. Phillips' submersion theorem makes clear the essential role played by the assumption that the source manifold is nonclosed (i.e., no compact component meets the boundary); in fact the immersion theorem in positive codimension can be deduced from the submersion theorem using the (nonclosed) normal bundle of the source manifold in the target.

I would like to thank my thesis advisor, Richard S. Palais, for his encouragement and generous advice.

Preliminaries on *G*-fibre bundles. Throughout this paper *G* denotes a compact Lie group. A *G*-manifold is a differentiable (C^{∞}) manifold *X* together with a differentiable action of *G* on *X*. Let *X* be a *G*-manifold and $p: E \to X$ a (locally trivial) differentiable fibre bundle. If there is a differentiable action of *G* on *E* such that each $g \in G$ operates as a bundle map over the given map $g: X \to X$, then we say that $p: E \to X$ is a (differentiable) *G*-fibre bundle (when *p* has a specified Lie structure group, bundle maps are understood to be induced by principal bundle maps). For example, the projection $p: X \times Y \to X$ from a product of *G*-manifolds with the diagonal action is equivariant, and *G* acts as a group of bundle maps if we consider *p* a trivial fibre bundle with structure group *G*.

A differentiable G-fibre bundle $p: E \to X$ is called G-locally trivial if for each $x \in X$ there is a G_x -invariant neighbourhood U_x of x (G_x is the isotropy subgroup of x) such that $p \mid U_x$ is differentiably G_x -equivariantly equivalent to the trivial G_x -fibre bundle $U_x \times p^{-1}(x)$. G-local triviality allows us to work equivariantly in local coordinates. Though differentiable

AMS (MOS) subject classifications (1970). Primary 57E15, 58C25, 58D10; Secondary 55D10, 58A20.

Key words and phrases. G-manifold, orbit bundle, handle bundle, G-fibre bundle, nonclosed manifold, r-jet, immersion, submersion.

¹ The author was supported at Brandeis University by a National Research Council of Canada Postgraduate Scholarship.