HOLOMORPHIC LEFSCHETZ FIXED POINT FORMULA

BY V. K. PATODI ${ }^{1}$
Communicated by Michael Atiyah, December 27, 1972

1. Let X be an n-dimensional complex analytic manifold and $\varphi: X \rightarrow X$ a holomorphic map. Let Ω be the sheaf of germs of holomorphic functions on X and $H^{i}(X, \Omega)$ the i th cohomology group of X with coefficients in the sheaf Ω. The map φ defines endomorphisms, $H^{i}(\varphi)$ of $H^{i}(X, \Omega), i \geqq 0$. Let $L(\varphi)$ be the Lefschetz number defined by

$$
L(\varphi)=\sum_{i=0}^{n}(-1)^{i} \text { trace } H^{i}(\varphi)
$$

We are concerned with the problem of computing $L(\varphi)$.
Remark. Let G be a compact Lie group acting on X as a group of holomorphic diffeomorphisms and $\varphi \in G$. The problem in this case has been solved by Atiyah and Singer, see [2]. Also in the case φ has isolated fixed points, the problem was solved in the nondegenerate case (see §2 for definition) by Atiyah and Bott in [1] and by Toledo and Tong in [6] and [7] in the degenerate case.
2. The statement of main theorem. Let X_{φ} be the fixed point set of the $\operatorname{map} \varphi, X_{\varphi}=\{x \in X$ s.t. $\varphi(x)=x\}$. We start by stating the conditions under which we have been able to compute the Lefschetz number $L(\varphi)$.
$\left(C_{1}\right) X_{\varphi}$ is a complex analytic submanifold of X and moreover with this complex analytic structure, X_{φ} is a Kähler manifold.

Let us write X_{φ} as a finite union of closed connected submanifolds of X :

$$
\begin{equation*}
X_{\varphi}=\bigcup_{i=1}^{N} Y_{i} \tag{1}
\end{equation*}
$$

Let $\lambda_{1}^{i}, \ldots, \lambda_{m_{i}}^{i}$ be the eigenvalues of the endomorphism $\left(\varphi_{*}\right)_{z}$ of $T_{z}(X)$, $z \in Y_{i}$, with multiplicities $n_{1}^{i}, \ldots, n_{m_{i}}^{i}$; eigenvalues λ_{j}^{i} are independent of $z \in Y_{i}$ because of the holomorphic nature of the situation. If 1 is an eigenvalue of the map φ_{*} we take $\lambda_{1}^{i}=1$.

The vector bundles $\left.T(X)\right|_{Y_{i}}$ decompose as a direct sum of holomorphic vector subbundles $E_{j}^{i}\left(1 \leqq j \leqq m_{i}\right)$ whose fibres $\left(E_{j}^{i}\right)_{z}$ are defined by:

$$
\left(E_{j}^{i}\right)_{z}=\left\{v \in T_{z}(X) \text { s.t. }\left(\varphi_{*}-\lambda_{j}^{i} I\right)^{n_{j}^{i}} v=0\right\}
$$

We now state our other conditions.
$\left(\mathrm{C}_{2}\right)$ The fixed points are nondegenerate: 1 is an eigenvalue of

[^0]Copyright (C) American Mathematical Society 1973

[^0]: AMS (MOS) subject classifications (1970). Primary 58G10, 53C65; Secondary 32A99.
 ${ }^{1}$ Supported in part by National Science Foundation grant GP-36418X.

