SKEW-PRODUCT FLOWS, FINITE EXTENSIONS OF MINIMAL TRANSFORMATION GROUPS AND ALMOST **PERIODIC DIFFERENTIAL EOUATIONS¹**

BY ROBERT J. SACKER² AND GEORGE R. SELL³ Communicated by Walter Gottschalk, January 11, 1973

I. Skew-product flows. A flow π on a product space $X \times Y$ is said to be a skew-product flow if there exist continuous mappings $\varphi: X \times Y \times T$ $\rightarrow X$ and $\sigma: Y \times T \rightarrow Y$ such that

$$\pi(x, y, t) = (\varphi(x, y, t), \sigma(y, t))$$

where σ is itself a flow on Y and T is a topological group. In other words the natural projection $p: X \times Y \to Y$ is a homomorphism of the transformation group $(X \times Y, T, \pi)$ onto (Y, T, σ) .

Skew-product flows arise in a natural way in the study of ordinary differential equations x' = g(x, t) (cf. [6] and [7]). In this case the group T would be the real numbers and Y would be a topological function space containing g and closed under time-translations. The flow σ would be given by $\sigma(f, \tau) = f_{\tau}$ where $f_{\tau}(x, t) = f(x, \tau + t)$. The space X would be the phase space for the differential equation, usually X is the Euclidean space R^n or perhaps some *n*-dimensional manifold, and $\varphi(x, f, t)$ would represent the solution of x' = f(x, t) passing through x at time t = 0. (We assume that all differential equations in Y give rise to unique solutions, although some of our results are valid without this restriction (cf. [8]).)

Now assume that Y is a compact minimal set under the flow σ and let $M \subset X \times Y$ be a compact invariant set of the skew-product flow. Motivated by the above model for differential equations we ask : When can certain structures be lifted from Y to M? For example, if we assume that Y is an almost periodic minimal set (that is, the flow σ is equicontinuous on Y) under what conditions will M contain an almost periodic minimal set?

We shall say that the flow π has the *distal property* on M if for any $y \in Y$ and $x_1, x_2 \in X$ with $x_1 \neq x_2, (x_1, y) \in M$ and $(x_2, y) \in M$ there is an

AMS (MOS) subject classifications (1970). Primary 22A99, 34C25, 34C35, 34C40, 54H20. Key words and phrases. Almost periodic differential equation, almost periodic solution, covering space, distal, equicontinuous, skew-product flow, transformation group.

¹ This research was begun while visiting at the Istituto di Matematica dell' Università di Firenze under the auspices of the Italian Research Council (C.N.R.). ²Partially supported by U.S. Army Grant DA-ARO-D-31-124-71-G176. ³Partially supported by NSF Grant No. GP-27275.