ON THE DIFFERENTIALS IN THE LYNDON-HOCHSCHILD-SERRE SPECTRAL SEQUENCE

BY PETER HILTON AND URS STAMMBACH Communicated by Alex Rosenberg, January 8, 1973

In this announcement we will state some results on the torsion of the differentials in the Lyndon-Hochschild-Serre (L-H-S) spectral sequence in the homology theory of groups and give some applications. Detailed proofs and further applications will appear elsewhere.

1. Main result. Let

be a group extension with N abelian, characterized by $\alpha \in H^2(Q; N)$, and let A be a G-module. Then there is a L-H-S spectral sequence (see [5]) $\{E_r^{mq}(A), d_r^{\alpha}\}$, associated with (1.1), with $E_2^{mq}(A) = H_m(Q; H_q(N; A))$, converging to the homology of G with coefficients in A.

To the authors' knowledge, only the differential d_2^{α} has been studied ([1], [2], [3], [4]); nothing seems to be known about the higher differentials $d_r^{\alpha}, r \ge 3$.

To state our main result we introduce certain numerical functions κ , λ , σ . For any natural number h and any prime p, we write $p^e || h$ to mean that $p^e || h$ but $p^{e+1} \not\mid h$. Let q, f, n be natural numbers and define a(p), b(p) by

$$p^{a(p)} || f, \quad b(p) = \min(q, a(p) + 1).$$

Let *n* admit the prime-power factorization $n = p_1^{s_1} p_2^{s_2} \cdots p_l^{s_l}$, and define the functions κ , λ , σ by

(1.2)

$$\kappa(f, n) = \prod_{i=1}^{l} p_i^{s_i + a(p_i)},$$

$$\lambda(q, f, n) = \prod_{(p-1)|f; p \neq p_1, p_2, \dots, p_l} p^{b(p)},$$

$$\sigma(q, f, n) = 2\kappa\lambda \quad \text{if } f \text{ is even and } 2||n \text{ or if } f \text{ is even},$$

$$n \text{ is odd and } a(2) + 2 \leq q,$$

$$= \kappa^2 \qquad \text{otherwise}$$

 $=\kappa\lambda$ otherwise.

Our main result is

THEOREM 1.1. Let (1.1) be characterized by $\alpha \in H^2(Q; N)$ of order n. Then, provided that either

AMS (MOS) subject classifications (1970). Primary 18H10; Secondary 20J05.

Copyright © American Mathematical Society 1973