EXISTENCE OF THE STABLE HOMOTOPY FAMILY $\{\gamma_t\}$

BY RAPHAEL ZAHLER

Communicated by Edgar H. Brown, Jr., August 7, 1972

Toda [7] has asked whether Smith's V(n)-construction for n=3 yields a nontrivial element γ_1 in the p-component $_p\pi_*^S$ of the stable homotopy of spheres (p a prime, $p \ge 5$). This question has become a major stumbling block, since γ_1 has stubbornly refused to be detected by most conventional invariants [9]. We can now show that γ_1 is essential; moreover (for $p \ge 7$) it is only the first of a new family $\{\gamma_t\}$ of stable homotopy elements, which are nontrivial for $t \le p-1$ at least. The family $\{\gamma_t\}$ parallels the known infinite families $\{\alpha_t\}$ and $\{\beta_t\}$ ([1], [4], [8], [10], [12]).

We define γ_t to be the composite

$$S^{2t(p^3-1)} \hookrightarrow S^{2t(p^3-1)}V(2) \xrightarrow{\chi_t} V(2) \to S^{2p^2+2p-1}$$

in the stable category, where the V(n) are the spectra introduced by Smith ([6], [8]), $\chi: S^{2(p^3-1)}V(2) \to V(2)$ is a map whose cone is V(3), and χ_t is the usual iterate of suspensions of χ . The map χ is known to exist only for $p \ge 7$, but a similar construction defines γ_1 for p = 5 as well [7].

Theorem A. The element $\gamma_1 \in {}_p\pi^S_{(p^2-1)_{q-3}}$ $(p \ge 5, q = 2(p-1))$ is essential.

Since it is known that ${}_{p}\pi^{s}_{(p^{2}-1)q-3} \cong Z_{p}$, generated by $\alpha_{1}\beta_{p-1}$ [4], γ_{1} must be a nonzero multiple of $\alpha_{1}\beta_{p-1}$. Thus Theorem A does not exhibit a new stable homotopy element; rather, it shows that the first element produced by the V(n) construction is nontrivial.

COROLLARY.

$$\alpha_1 \beta_{p-1} \beta_s = 0, \qquad s \ge 3,$$

$$\alpha_1 \beta_1 \beta_k = 0, \qquad k \not\equiv -2 \mod p, k \ge p,$$

$$\alpha_1 \beta_2 \beta_{k-1} = 0, \qquad k \not\equiv -2 \mod p, k \ge p+1,$$

$$p \ge 5.$$

This follows from Theorem A and Proposition 5.9 of [7].

AMS (MOS) subject classifications (1970). Primary 55E45, 55G25, 55G20; Secondary 55B20.

Key words and phrases. Stable homotopy of spheres, higher order operations, BP cohomology.

¹ The element $\gamma_1 \in {}_{p} \pi_{(p^2-1)q-3}^{S}$ should not be confused with the ephemeral element $\gamma \in {}_{p} \pi_{p^2q-2}^{S}$ whose nonexistence was proved by Toda [5].