EXISTENCE OF THE STABLE HOMOTOPY FAMILY $\left\{\gamma_{t}\right\}$

BY RAPHAEL ZAHLER
Communicated by Edgar H. Brown, Jr., August 7, 1972

Toda [7] has asked whether Smith's $V(n)$-construction for $n=3$ yields a nontrivial element γ_{1} in the p-component ${ }_{p} \pi_{*}^{S}$ of the stable homotopy of spheres (p a prime, $p \geqq 5$). ${ }^{1}$ This question has become a major stumbling block, since γ_{1} has stubbornly refused to be detected by most conventional invariants [9]. We can now show that γ_{1} is essential; moreover (for $p \geqq 7$) it is only the first of a new family $\left\{\gamma_{t}\right\}$ of stable homotopy elements, which are nontrivial for $t \leqq p-1$ at least. The family $\left\{\gamma_{t}\right\}$ parallels the known infinite families $\left\{\alpha_{t}\right\}$ and $\left\{\beta_{t}\right\}([1],[4],[8],[10],[12])$.

We define γ_{t} to be the composite

$$
S^{2 t\left(p^{3}-1\right)} \hookrightarrow S^{2 t\left(p^{3}-1\right)} V(2) \xrightarrow{\chi_{t}} V(2) \rightarrow S^{2 p^{2}+2 p-1}
$$

in the stable category, where the $V(n)$ are the spectra introduced by Smith ([6], [8]), $\chi: S^{2\left(p^{3}-1\right)} V(2) \rightarrow V(2)$ is a map whose cone is $V(3)$, and χ_{t} is the usual iterate of suspensions of χ. The map χ is known to exist only for $p \geqq 7$, but a similar construction defines γ_{1} for $p=5$ as well [7].

Theorem A. The element $\left.\gamma_{1} \in{ }_{p} \pi_{\left(p^{2}-1\right.}^{S}\right)_{q-3}(p \geqq 5, q=2(p-1))$ is essential.

Since it is known that ${ }_{p} \pi_{\left(p^{2}-1\right) q-3}^{S} \cong Z_{p}$, generated by $\alpha_{1} \beta_{p-1}$ [4], γ_{1} must be a nonzero multiple of $\alpha_{1} \beta_{p-1}$. Thus Theorem A does not exhibit a new stable homotopy element; rather, it shows that the first element produced by the $V(n)$ construction is nontrivial.

Corollary.

$$
\left.\begin{array}{rl}
\alpha_{1} \beta_{p-1} \beta_{s}=0, & s \geqq 3, \\
\alpha_{1} \beta_{1} \beta_{k}=0, & k \not \equiv-2 \bmod p, k \geqq p, \\
\alpha_{1} \beta_{2} \beta_{k-1}=0, & k \not \equiv-2 \bmod p, k \geqq p+1
\end{array}\right\} p \geqq 5 .
$$

This follows from Theorem A and Proposition 5.9 of [7].

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 55E45, 55G25, 55G20; Secondary 55B20.

 Key words and phrases. Stable homotopy of spheres, higher order operations, BP cohomology.
 ${ }^{1}$ The element $\gamma_{1} \in{ }_{p} \pi_{\left(p^{2}-1\right) q-3}^{S}$ should not be confused with the ephemeral element $\gamma \in{ }_{p} \pi_{p^{2} q-2}^{S}$ whose nonexistence was proved by Toda [5].

