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1. Introduction and results. Let M be a manifold ; define F(M, k) to be 
the subspace {<x l 5 . . . , xk>|xf e M, xt ^ Xj if i # j} of Mk. There is a 
proper right action of Sk, the symmetric group on fc-letters, on F(M, fc) 
given by 

G - <X1 ? . . . , Xk> = ( X ^ ! ) , . . . , X ^ ) ) , Ö-G2k. 

Let B(M, fe) denote the orbit space F(M, fc)/Zk. The object of this paper 
is to outline the calculation of 

H*(HomZp(CtF(Rr, p) ; Zp{q))\ n^2,p prime, 

where C+F(Rn
9 p) denotes the singular chains of F(Rn, p), and Zp{q) de

notes the Ip-module Zp with 2P-action a • x = ( - l)qsi(r)x for xeZp and 
a e Zp ( ( - 1)S(<T) is the sign of a). Since the Enaction on F(Rn, p) is proper, 
we may identify H*(HomEp(C^F(«w, p) ; Zp(2g))) with H*(B(Rn,p); Zp) 
[5]. By abuse of notation we denote H*(Hom2 ( Q F ^ p ) ; Zp(g))) by 
H*(B(R\p);Zp(q)). 

The interest in H*(B(Rn, p) ; Zp(g)) arises from the work of Peter May 
[6], [7] which implies that each class in H^(B(Rn

9p); Zp(q)) determines a 
homology operation on all classes of degree q in the mod p homology of 
any rc-fold loop space. 

For our calculations, we rely heavily on the map of fibrations 

*P % 

F(Rn
9p)-^F(R™,p) 

B(R\p)^B(R™,p) 

where F(fl°°, p) = lim F(Rn, p) and £(J?°°, p) = F(K°°, p)/Sp. Here ƒ and 
ƒ are the evident inclusions. Since F(jR°°,p) is contractible with free 
Sp -action, £(fl°°, p) is a K(Ep , 1). Obviously 
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