UNIQUENESS OF ORIENTATION PRESERVING PL INVOLUTIONS OF 3-SPACE

BY KYUNG WHAN KWUN ${ }^{1}$ AND JEFFREY L. TOLLEFSON
Communicated by Morton L. Curtis, December 21, 1972

1. Introduction. Waldhausen [2] has proven that every PL involution of S^{3} with 1-dimensional fixed point set is PL equivalent to the one which rotates S^{3} around an unknotted simple closed curve. In this note we show how the corresponding result for R^{3} (which has been heretofore unknown) follows from a technique used by the second author in his recent paper [1]. Specifically, we prove

Theorem 1. Every orientation preserving PL involution of R^{3} is $P L$ equivalent to the one which rotates R^{3} around the z-axis.

Since such an involution must have 1-dimensional fixed point set, the above theorem is a consequence of the following theorem if one considers the one-point compactification of R^{3}.

Theorem 2. Let h be an involution of a closed 3-manifold M with 1-dimensional fixed point set F. If, for some $x \in F$, there exists a triangulation of $M-\{x\}$ making $h \mid M-\{x\}$ piecewise linear, then there exists a triangulation of M making h piecewise linear.

Theorem 2 will be proved by literally imitating the reduction method [2, proof of Lemma 2] of Tollefson.

2. Proof of Theorem 2.

Lemma. Let M, F, x and h be as in Theorem 2. Then, for any neighborhood U of x, there exists in U an invariant 3-cell D containing x in its interior such that $\partial D \cap F \neq \varnothing$ and ∂D is a PL subspace of $M-\{x\}$.

Proof. We indicate how to modify the proof of Lemma 2 of [1] to produce the desired invariant 3-cell D. We may assume that F is not contained in U. Let Σ be the set of all PL 2-spheres in $M-\{x\}$ that bound 3-cell neighborhoods of x in U and are in h-general position modulo F (in the sense of [1]). The lemma follows from the proof of Lemma 2 of [1] if the phrase " 2 -spheres not bounding 3-cells" is replaced by "PL 2-spheres in $M-\{x\}$ bounding 3-cell neighborhoods of x in U."

In order to prove Theorem 2, consider a sequence of invariant 3-cells

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 57A10; Secondary 55A10, 57C15, 57E25.
 ${ }^{1}$ Supported in part by NSF grants GP-29515X and 30808.

