THE VITALI-HAHN-SAKS AND NIKODYM THEOREMS FOR ADDITIVE FUNCTIONS. II

BY R. B. DARST

Communicated by Robert Bartle, January 10, 1973

ABSTRACT. In this note appropriate versions of the Vitali-Hahn-Saks and Nikodym theorems are established for s-bounded additive set functions with values in an abelian topological group G.

Although we shall use + and 0 to denote addition and identity in both G and R, the real numbers, no confusion should arise. Thus we denote by \mathscr{U} the set of symmetric neighborhoods of 0 in G, and for $U \in \mathscr{U}$ we set 1U = U and $(n + 1)U = \{x + y : x \in nU, y \in U\}$, $n \in N$, the set of positive integers.

A subset H of G is said to be bounded if for each $U \in \mathcal{U}$ there exists $n \in N$ such that $H \subset nU$.

We suppose that finite subsets of G are bounded.

Let Ω be a nonempty set and let \mathscr{S} be a sigma algebra of subsets of Ω . A function μ from \mathscr{S} to G is said to be additive if $\mu(\phi) = 0$ and $\mu(E \cup F) + \mu(E \cap F) = \mu(E) + \mu(F), E, F \in \mathscr{S}$.

An additive function μ is said to be s-bounded (cf. [1],[5]) if $\lim_{n}\mu(E_n) = 0$ (i.e., for each $U \in \mathcal{U}$ there is $m \in N$ such that $\mu(E_n) \in U$, n > m) for each sequence $\{E_n\}$ of pairwise disjoint elements of \mathcal{S} .

Notice that if μ is s-bounded, $U \in \mathcal{U}$, and $\{E_n\}$ is a sequence of pairwise disjoint elements of \mathcal{S} , then there exists $n \in N$ such that if M is a finite subset of $N^n = \{k \in N : k \ge n\}$ then $(\sum_{i \in M} \mu(E_i)) \in U$.

An additive function μ is said to be bounded if $\mu(\mathscr{S}) = {\mu(E) : E \in \mathscr{S}}$ is a bounded subset of G.

For the case when μ is sigma-additive, versions of our results can be found in [4]; for the case where μ is merely additive and G = R, one can refer to [2].

Our version of Nikodym's theorem, a striking improvement of the principle of uniform boundedness, follows.

THEOREM 1. Suppose that T is a set of s-bounded functions such that for each $E \in \mathcal{S}$ the set $T(E) = \{\mu(E): \mu \in T\}$ is bounded, then $T(\mathcal{S}) = \{\mu(E): \mu \in T, E \in \mathcal{S}\}$ is bounded.

AMS (MOS) subject classifications (1970). Primary 28-00, 28A45, 46G99.

Key words and phrases. Vitali-Hahn-Saks theorem, Nikodym theorem, s-bounded, additive set function, abelian group.