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Let G be a bounded domain in Cn. Let A be the unit disk in C. Let 
A(G) be the set of holomorphic mappings from G to A, and G(A) the set 
of holomorphic mappings from A to G. The Carathéodory metric on G 
(i.e. the infinitesimal form, as in [7] is defined by 

Fc(z, £) = sup \fj£)\ = sup 
feA(G) feA(G) M- zeG^eCn. 

The Kobayashi metric on G (infinitesimal form) is defined by [8] 
FK(z,Ç) = inf{a|3/eG(A) with /(O) = z, /'(O) = <J/a, a > 0}. For the 
definition of the Bergman metric see [1] or [4]. We take 

FB{zA) = {ds\z^)f 

in the notation of [4]. 
We consider the boundary behavior of these metrics for fixed £. The 

notable features are (i) the different limiting behavior in tangential and 
normal directions (cf. Stein [9]), and (ii) the appearance of the Levi form 
as the limiting value of a quantity defined inside the domain. 

THEOREM. Let G be a {bounded) strongly pseudoconvex domain in Cn with 
C2 boundary. Let z0 e dG. Let q> be a C2 defining function for ÔG such that 
\Vzq>(z0)\ = 1. Let F(z9£) be either the Carathéodory or the Kobayashi 
metric on G. Then 

lim F(z, ®d(z, dG) = i|Vrf»(z0) • & = i l ^o ) l -
z-*zo 

IfVz(p(z0) - £, = 0, i.e. £ is a tangent vector to dG at z0, then 

lim (F(z,0)2rf(z,aG) = ^ , 2 0 ( é ) = i t p^r(zo)Uy 
z-+zo;zeA ii=^OZ^OZi 

d(z, dG) is the Euclidean distance to the boundary. Wzq> is the vector 
(dq>/dz1,..., d<p/dzn), and Vzcp{zQ) • ^ = Z"= i {Sq>ldz^(z0)^ = ÇN(z0) is the 
(complex) normal component of £ at z0. A in the second limit denotes a 
cone of arbitrary aperture with vertex at z0 and axis the interior normal 
todG. 
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