APPROXIMATION AND WEAK-STAR APPROXIMATION IN BANACH SPACES¹

BY DAVID W. DEAN

Communicated by Robert Bartle, January 16, 1973

ABSTRACT. If X* has a weak-star basis and if X is separable, then X has a basis. If X* has the weak-star λ -m.a.p. [a weak-star π_{λ} -decomposition], then X has the λ -m.a.p. [a $\pi_{\lambda+\lambda^{2+}e}$ -decomposition]. If X* has a weak-star π_{λ} -decomposition and if X is separable, then X has a finite dimensional decomposition.

The problem of whether X is separable if X^* has a weak-star basis [8, p. 151] is unsolved, though there are candidates for a counterexample [3, 3.1], [6, pp. 243, 244]. In this note techniques developed in [5] are used, together with certain properties of weak convergence, to show that weak-star approximation methods in X^* will yield approximation properties in X.

In [5] the authors established very deep relationships between approximation methods in a Banach space X and its dual X^{*}. In particular they proved that if X^{*} has a basis, then X has a shrinking basis; and if X^{*} is a π_{λ} -space, then X is a π_{δ} -space for some $\delta > 1$. A fundamental tool in this work was the "principle of local reflexivity" [5], [6]. The basic corollary needed below is the following Theorem A [5, 3.1] or [4, p. 482], where $\mathscr{L}(B)$ is the space of bounded linear operators from B to B.

THEOREM A. Let T be a finite rank operator in $\mathscr{L}(X^*)$ and let $F \subset X^*$ have dim $F < \infty$. Let $\varepsilon > 0$. Then there is an S in $\mathscr{L}(X)$ such that $S^*(X^*)$ $= T(X^*)$, f(Sx) = Tf(x) for each f in F, x in X, and $||S|| \leq (1 + \varepsilon)||T||$. If T is a projection, then taking F to include $T(X^*)$, S is a projection.

THEOREM 1. Let (T_{α}) be a net of finite rank operators in $\mathscr{L}(X^*)$ such that $||T_{\alpha}|| \leq \lambda$ for all α and $\lim T_{\alpha}f(x) = f(x)$ for each f in X^* , x in X. Then there is a net of finite rank operators (S_{β}) in $\mathscr{L}(X)$ such that $\lim S_{\beta}x = x$ for each x, $||S_{\beta}|| \leq \lambda$ for each β .

PROOF. For each finite-dimensional subspace F of X*, use Theorem A to find $S_{\alpha,F}$ such that $f(S_{\alpha,F}x) = T_{\alpha}f(x)$ for every f in F, x in X, $S_{\alpha,F}^*(X^*) = T_{\alpha}(X^*)$ and $||S_{\alpha,F}|| \leq \lambda(1 + 1/(1 + \dim F))$. Let $(\alpha_1, F_1) \geq (\alpha_2, F_2)$, if $\alpha_1 \geq \alpha_2, F_1 \supset F_2$. Then $(1 + \dim(F))S_{\alpha,F}/(2 + \dim(F)) = R_{\alpha,F}$ has norm $\leq \lambda$ and $\lim f(R_{\alpha,F}x) = f(x)$ for every f in X*, x in X. Then a net (P_{β}) of convex combinations of $(R_{\alpha,F})$ has the property that $\lim P_{\beta}x = x$ for

AMS (MOS) subject classifications (1970). Primary 46B15, 46A20; Secondary 47A65. ¹This work was partially supported by the Battelle Advanced Studies Center, Geneva.

Copyright © American Mathematical Society 1973