A COMPLETE BOOLEAN ALGEBRA OF SUBSPACES WHICH IS NOT REFLEXIVE

BY JOHN B. CONWAY

Communicated by Paul R. Halmos, December 27, 1972

This note provides a negative answer to a question raised by P. R. Halmos [2, Problem 9]. For the convenience of the reader, the terminology necessary to understand the question is presented here. Let \mathscr{L} be a lattice of subspaces of a Hilbert space \mathscr{H} and let Alg \mathscr{L} be the algebra of all bounded operators in $\mathscr{B}(\mathscr{H})$ that leave each subspace in \mathscr{L} invariant. If $\mathscr{A} \subset \mathscr{B}(\mathscr{H})$, let Lat \mathscr{A} be the lattice of all subspaces of \mathscr{H} that are left invariant by each operator in \mathscr{A} . A lattice \mathscr{L} is *reflexive* if Lat Alg $\mathscr{L} = \mathscr{L}$. If \mathscr{L} is a reflexive lattice and $\{P_i\}$ is a net of orthogonal projections such that $P_i(\mathscr{H}) \in \mathscr{L}$ for each *i* and $P_i \to P$ in the strong operator topology then $P(\mathscr{H}) \in \mathscr{L}$; in other words, \mathscr{L} is *strongly closed*. It is true that a strongly closed lattice of subspaces is a complete lattice, but the converse is false.

A Boolean algebra of subspaces is a distributive lattice \mathscr{L} such that for each M in \mathscr{L} there is a unique M' in \mathscr{L} such that $M \cap M' = (0)$ and $M \lor M' \equiv (M + M')^- = \mathscr{H}$. (Note that it is only required that \mathscr{H} be the closure of M + M'.) Problem 9 of [2] asks: Is every complete Boolean algebra of subspaces reflexive? The answer is no, and this is shown in this paper by giving a complete Boolean algebra of subspaces which is not strongly closed. In one sense this answer seems unsatisfactory because a new question arises: Is every strongly closed Boolean algebra of subspaces reflexive? In another sense the answer is satisfying because the original question was the proper one to ask. The property of completeness is a lattice theoretic one, while the property of being strongly closed is not.

For the remaining terminology the reader is referred to [4] and other standard references. If $X = [0, 2\pi]$, let μ be a positive singular measure on the collection \mathcal{A} of Borel subsets of X. For A in \mathcal{A} define

$$\varphi_{A}(z) = \exp\left(-\int_{A} \frac{e^{i\theta}+z}{e^{i\theta}-z} d\mu(\theta)\right), \qquad |z| < 1,$$

and put $\varphi = \varphi_X$. Each φ_A is an inner function, and φ_A is a divisor of φ_B if and only if $A \subset B$. $\mathscr{H} = H^2 \ominus \varphi H^2$ and, for each A in \mathscr{A} , $M_A = \varphi_A H^2 \ominus \varphi H^2$.

AMS (MOS) subject classifications (1970). Primary 47A15; Secondary 06A40, 46L15.

Copyright © American Mathematical Society 1973