KRULL DIMENSION-NILPOTENCY AND GABRIEL DIMENSION

BY ROBERT GORDON, THOMAS H. LENAGAN AND J. C. ROBSON Communicated by Hyman Bass, December 27, 1972

One property of right noetherian rings and noetherian modules is that they have a Krull dimension in the sense of Rentschler-Gabriel [11]; see below for a definition. This property is considerably weaker than being noetherian. Nevertheless it was shown in [3] and [8] that, if a semiprime ring has a Krull dimension, then it is a right Goldie ring; and it has been conjectured that, in any ring with Krull dimension, nil subrings are nilpotent. Here we describe a proposition by means of which we have established the truth of this conjecture; and we describe other results which follow from it. Several of these are concerned with the connection between the Krull dimension of a module and its "Krull dimension" as defined in [1], which we call its Gabriel dimension. The detailed proofs will appear in [4], [6] and [10].

The proposition, which is basic to the proofs of the results which follow, deals with a module M which has a descending chain of submodules, of order type ω ,

$$M_0 \supseteq M_1 \supseteq M_2 \supseteq \ldots$$

and an ascending chain of submodules, of order type ε for some ordinal ε ,

$$B_1 \subseteq B_2 \subseteq \cdots \subseteq B_{\delta} \ldots$$

Let us write $\delta M_n = B_\delta \cap M_n$. From the two chains above, we obtain the following array.

Note that, by the construction of the array, if $\delta \ge \delta'$ then $\delta M_n \ge \delta' M_n + \delta M_{n+1}$ for each *n*.

PROPOSITION 1. Suppose that, with the situation as described above, there is a countably infinite sequence of ordinals $\delta_0 < \delta_1 < \delta_2 < \cdots < \varepsilon$ such that, for each n, $\delta_{n+1}M_n \supseteq \delta_n M_n + \delta_{n+1}M_{n+1}$. Then the module

$$\sum_{n=0}^{\infty} \delta_{n+1} M_n \bigg/ \sum_{n=0}^{\infty} \delta_n M_n$$

is the infinite direct sum of its nonzero submodules

$$\delta_{n+1} M_n + \sum_{n=0}^{\infty} \delta_n M_n \Big/ \sum_{n=0}^{\infty} \delta_n M_n.$$

AMS (MOS) subject classifications (1970). Primary 16A22, 16A46, 16A66.

Copyright © American Mathematical Society 1973