SELFADJOINT SUBSPACE EXTENSIONS OF NONDENSELY DEFINED SYMMETRIC OPERATORS¹

BY EARL A. CODDINGTON

Communicated by Fred Brauer, December 18, 1972

1. Subspaces in \mathfrak{H}^2 . Let \mathfrak{H} be a Hilbert space over the complex field C, and let $\mathfrak{H}^2 = \mathfrak{H} \oplus \mathfrak{H}$ be the Hilbert space of all pairs $\{f, g\}$, where $f, g \in \mathfrak{H}$, with the inner product $(\{f, g\}, \{h, k\}) = (f, h) + (g, k)$. A subspace T in \mathfrak{H}^2 is a closed linear manifold in \mathfrak{H}^2 ; its domain $\mathfrak{D}(T)$ is the set of all $f \in \mathfrak{H}$ such that $\{f, g\} \in T$ for some $g \in \mathfrak{H}$, and its range $\mathfrak{R}(T)$ is the set of all $g \in \mathfrak{H}$ such that $\{f, g\} \in T$ for some $f \in \mathfrak{H}$. For $f \in \mathfrak{D}(T)$ we put $T(f) = \{g \in \mathfrak{H} | \{f, g\} \in T\}$. A subspace T in \mathfrak{H}^2 is the graph of a linear function if $T(0) = \{0\}$; in this case we say T is an operator in \mathfrak{H} , and then we denote T(f) by Tf.

The *adjoint* T^* of a subspace T in \mathfrak{H}^2 is defined by

$$T^* = \{\{h, k\} \in \mathfrak{H}^2 | (g, h) = (f, k) \text{ for all } \{f, g\} \in T\}.$$

If J is the unitary operator in \mathfrak{H}^2 given by $J\{f,g\} = \{g, -f\}$, then $T^* = \mathfrak{H}^2 \ominus JT$, the orthogonal complement of JT in \mathfrak{H}^2 . This shows that T^* is also a subspace in \mathfrak{H}^2 .

If T is a subspace in \mathfrak{H}^2 , let $T_{\infty} = \{\{f, g\} \in T | f = 0\}$. Then $T_s = T \ominus T_{\infty}$ is a closed operator in \mathfrak{H} , and we have the orthogonal decomposition $T = T_s \oplus T_{\infty}$, with $\mathfrak{D}(T_s)$ dense in $\mathfrak{H} \ominus T^*(0)$, $\mathfrak{R}(T_s) \subset \mathfrak{H} \ominus T(0)$.

A symmetric subspace S in \mathfrak{H}^2 is one satisfying $S \subset S^*$, and a selfadjoint subspace H is a symmetric one such that $H = H^*$. If $H = H_s \oplus H_{\infty}$ is a selfadjoint subspace in \mathfrak{H}^2 we have the result (due to Arens, [1, Theorem 5.3]) that H_s , considered as an operator in $\mathfrak{H} \ominus H(0)$, is a densely defined selfadjoint operator there. This permits a spectral analysis of a selfadjoint subspace H, once its operator part H_s and its purely multi-valued part H_{∞} have been identified.

If S, S_1 are symmetric subspaces in \mathfrak{H}^2 such that $S \subset S_1$, then S_1 is said to be a symmetric extension of S. In [3] (see also [2]) we described all symmetric and selfadjoint extensions of a symmetric subspace S in \mathfrak{H}^2 . In this note we characterize precisely, in terms of "generalized boundary conditions", those selfadjoint subspace extensions of a nondensely defined symmetric operator S in \mathfrak{H} . Applications to ordinary differential operators will be indicated in a subsequent note. Detailed

AMS (MOS) subject classifications (1970). Primary 47B99, 47B25, 47A20.

Key words and phrases. Symmetric subspace, selfadjoint subspace, selfadjoint extension, symmetric operator, selfadjoint operator.

¹ This research was supported in part by NSF Grant No. GP-33696X.

Copyright © American Mathematical Society 1973