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1. Subspaces in §2 . Let § be a Hilbert space over the complex field 
C, and let § 2 = § © § be the Hilbert space of all pairs {ƒ, g}, where 
ƒ, g G §>, with the inner product ({ƒ, g}, {h, k}) = ( ƒ, h) + (g, k). A subspace 
T in § 2 is a closed linear manifold in Jr>2; its domain Î)(T) is the set of 
all ƒ e § such that {ƒ g} eT for some g e §, and its range 9Î(T) is the set 
of all g e 9) such that {f,g]eT for some ƒ G §. For / e £ ( T ) we put 
T(f) = {ge§>!{ƒ,g} e T}. A subspace Tin § 2 is the graph of a linear 
function if T(0) = {0} ; in this case we say T is an operator in §>, and then 
we denote T( ƒ ) by Tjf. 

The adjoint T* of a subspace T in § 2 is defined by 

T* = {{fc, k} e £2|(g, A) = ( ƒ fc) for all {ƒ, g} e T}. 

If J is the unitary operator in § 2 given by J{f,g} = {g, —ƒ}, then 
T* = 9)2 © J7^ the orthogonal complement of JT in §2 . This shows that 
T* is also a subspace in §2 . 

If Tis a subspace in §2 , let T^ = {{ƒ, g} e T\f = 0}. Then Ts=TeTœ 

is a closed operator in §, and we have the orthogonal decomposition 
T= Ts®Tœ, with D(TS) dense in § © T*(0), 9t(T8) <= § © T(0). 

A symmetric subspace S in Jr>2 is one satisfying S cz 5*, and a selfadjoint 
subspace H is a symmetric one such that H = //*. If H = Hs © Hœ is 
a selfadjoint subspace in § 2 we have the result (due to Arens, [1, Theorem 
5.3]) that Hs, considered as an operator in § © H(0), is a densely defined 
selfadjoint operator there. This permits a spectral analysis of a selfadjoint 
subspace H, once its operator part Hs and its purely multi-valued part 
H^ have been identified. 

If S,S1 are symmetric subspaces in § 2 such that S a Sl9 then Sx is 
said to be a symmetric extension of S. In [3] (see also [2]) we described 
all symmetric and selfadjoint extensions of a symmetric subspace S in 
§2 . In this note we characterize precisely, in terms of "generalized 
boundary conditions", those selfadjoint subspace extensions of a non-
densely defined symmetric operator S in §. Applications to ordinary 
differential operators will be indicated in a subsequent note. Detailed 
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