MAPPINGS INTO HYPERBOLIC SPACES

BY MYUNG H. KWACK Communicated by S. S. Chern, December 18, 1972

In this note we state some results on extensions of holomorphic mapings into hyperbolic spaces. A theorem involves extending holomorphic mappings to a domain of holomorphy. An extension problem of holomorphic mappings into a taut complex space was considered by Fujimoto [1].

Another result is that the space of all meromorphic mappings from a complex space X into a hyperbolically imbedded space in Y is relatively compact in the space of all meromorphic mappings from X into Y.

A relatively compact complex space M is said to be hyperbolically imbedded in a complex space Y if for all sequences $\{p_n\}$ and $\{q_n\}$ in Msuch that $p_n \to p \in \overline{M}$ and $q_n \to q \in \overline{M}$ and such that $d_M(p_n, q_n) \to 0$, we have p = q. Here d_M denotes the pseudo-distance defined by Kobayashi [5]. A relatively compact complex space M in Y is strictly Levi pseudoconvex if for every point $p \in \partial M$ there are a neighborhood U_p of p and a biholomorphic map Φ_p of U_p onto a subvariety of a domain D_p in some C^n and a function φ defined in U_p such that $\varphi \circ \Phi_p^{-1}$ is the restriction to $\Phi_p(U_p)$ of a strictly pluri-subharmonic function $\tilde{\varphi}_p$ defined in D_p and $\Phi_p(U_p \cap M) = \{x \in \Phi(U_p) : \tilde{\varphi}_p(x) < 0\}.$

THEOREM 1. Let X be a complex manifold and A be an analytic subset of X of codimension at least 1. Let M be a strictly Levi pseudoconvex hyperbolic space in Y. Then a holomorphic mapping f of X - A into M can be extended holomorphically to a mapping \tilde{f} of X into M.

This theorem can be proved using a theorem by Kwack [6] and the fact that there exist a neighborhood W of ∂M and a pluri-subharmonic function ψ defined on W such that $W \cap M = \{x \in M : \psi(x) < 0\}$.

THEOREM 2. Let M be one of the following: (i) M is a hyperbolic and strictly Levi pseudoconvex subspace of a complex space Y, and (ii) M is a complex manifold having a complete Hermitian metric ds_M^2 all of whose holomorphic sectional curvatures are nonpositive. Let N be an (unramified) Riemann domain over a Stein manifold and f be a holomorphic mapping of N into M. Then the existence domain of the mapping f from N into M is a Stein manifold.

AMS (MOS) subject classifications (1970). Primary 32A10, 32H20.

Key words and phrases. Holomorphic functions, hyperbolic spaces, extension of holomorphic mappings.