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In this note we state some results on extensions of holomorphic map-
ings into hyperbolic spaces. A theorem involves extending holomorphic 
mappings to a domain of holomorphy. An extension problem of holo
morphic mappings into a taut complex space was considered by Fujimoto 

[1]. 
Another result is that the space of all meromorphic mappings from a 

complex space X into a hyperbolically imbedded space in Y is relatively 
compact in the space of all meromorphic mappings from X into Y. 

A relatively compact complex space M is said to be hyperbolically 
imbedded in a complex space Y if for all sequences {pn} and {qn} in M 
such that pn-+ peM and gw -> qeM and such that dM(pn,qn) -» 0, we 
have p = q. Here dM denotes the pseudo-distance defined by Kobayashi 
[5]. A relatively compact complex space M in Y is strictly Levi pseudo-
convex if for every point p e dM there are a neighborhood Up of p and 
a biholomorphic map Op of Up onto a subvariety of a domain Dp in some 
Cn and a function cp defined in Up such that cp o ^ " 1 is the restriction to 
®p(Up) of a strictly pluri-subharmonic function <pp defined in Dp and 
%(UpnM) = {xE^(Up):q>p(x) < 0}. 

THEOREM 1. Let X be a complex manifold and A be an analytic subset 
of X of codimension at least 1. Let M be a strictly Levi pseudoconvex 
hyperbolic space in Y. Then a holomorphic mapping f of X — A into M 
can be extended holomorphically to a mapping fofX into M. 

This theorem can be proved using a theorem by Kwack [6] and the 
fact that there exist a neighborhood W of dM and a pluri-subharmonic 
function \j/ defined on Wsuch that Wc\M = {xeM:\j/(x) < 0}. 

THEOREM 2. Let M be one of the following: (i) Misa hyperbolic and strictly 
Levi pseudoconvex subspace of a complex space 7, and (ii) M is a complex 
manifold having a complete Hermitian metric ds^ all of whose holomorphic 
sectional curvatures are nonpositive. Let N be an (unramified) Riemann 
domain over a Stein manifold and f be a holomorphic mapping of N into M. 
Then the existence domain of the mapping f from N into M is a Stein mani
fold. 
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