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Introduction. In this note we indicate the development and state the 
properties of a degree theory for a rather general class of multivalued 
mappings, the so-called ultimately compact vector fields, and then use 
this degree to obtain fixed point theorems. As will be seen, these results 
unite and extend the degree theory for single-valued ultimately compact 
vector fields in [13] and the degree theory for multivalued compact vector 
fields in ([5], [8]) and also serve to extend to multivalued mappings the 
fixed point theorems for single-valued mappings obtained in [1], [2], [3], 
[9], [10], [13], and others (see [13]) and to more general multivalued 
mappings the fixed point theorems in [4], [6], [8]. The detailed proofs 
of the results presented in this note will be published elsewhere. 

1. Let X be a metrizable locally convex topological vector space. If 
D c l w e denote by K(D) and CK(D) the family of closed convex, and the 
family of compact convex subsets of D, respectively. We also use D (or cl D), 
ÔD, and clco D to denote the closure, boundary and convex closure of D, 
respectively. To define what we mean when we say that the upper semicon-
tinuous (u.s.c.) mapping T:D -• K(X) is ultimately compact, we employ a 
construction of a certain transfinite sequence {Ka} utilized by Sadovsky 
[13] in his development of the index theory for ultimately compact single-
valued vector fields. Let K0 = clco T(D), where T(A) = [jxeA T(x) for 
A a D. Let tj be an ordinal such that Kp is defined for ƒ? < rj. If rj is of the 
first kind we let Kn = clco T(D n X r l ) , and if rj is of the second kind we 
let Kn = f]fi Kp. Then <Xa> is well defined and such that Kx a Kp if 
a > j8. Consequently, there exists an ordinal y such that Kp = Ky if 
P ^ y. We define K = K{T, D) = Ky and observe that clco T(K n D) = K. 
The mapping T is called ultimately compact if either K n D = 0 or if 
T(K n D) is relatively compact. 

DEFINITION 1. Let D c X be open with T:D -> K(X) ultimately compact 
and such that x $ T(x) if je e dD. If K(T, D) n D = 0 we define deg(J -
T, D, 0) = 0, and if K(T, D) n D # 0 we let p be a retraction of X onto 
X(T,D) and define 
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