DEGREE THEORY FOR NONCOMPACT MULTIVALUED VECTOR FIELDS

BY W. V. PETRYSHYN¹ AND P. M. FITZPATRICK² Communicated by François Treves, October 27, 1972

Introduction. In this note we indicate the development and state the properties of a degree theory for a rather general class of multivalued mappings, the so-called ultimately compact vector fields, and then use this degree to obtain fixed point theorems. As will be seen, these results unite and extend the degree theory for single-valued ultimately compact vector fields in [13] and the degree theory for multivalued compact vector fields in ([5], [8]) and also serve to extend to multivalued mappings the fixed point theorems for single-valued mappings obtained in [1], [2], [3], [9], [10], [13], and others (see [13]) and to more general multivalued mappings the fixed point theorems in [4], [6], [8]. The detailed proofs of the results presented in this note will be published elsewhere.

1. Let X be a metrizable locally convex topological vector space. If $D \subset X$ we denote by K(D) and CK(D) the family of closed convex, and the family of compact convex subsets of D, respectively. We also use \overline{D} (or cl D), ∂D , and cloo D to denote the closure, boundary and convex closure of D, respectively. To define what we mean when we say that the upper semicontinuous (u.s.c.) mapping $T: D \to K(X)$ is ultimately compact, we employ a construction of a certain transfinite sequence $\{K_{\alpha}\}$ utilized by Sadovsky [13] in his development of the index theory for ultimately compact singlevalued vector fields. Let $K_0 = \operatorname{clco} T(D)$, where $T(A) = \bigcup_{x \in A} T(x)$ for $A \subset D$. Let η be an ordinal such that K_{β} is defined for $\beta < \eta$. If η is of the first kind we let $K_{\eta} = \operatorname{clco} T(D \cap K_{\eta-1})$, and if η is of the second kind we let $K_{\eta} = \bigcap_{\beta < \eta} K_{\beta}$. Then $\langle K_{\alpha} \rangle$ is well defined and such that $K_{\alpha} \subset K_{\beta}$ if $\alpha > \beta$. Consequently, there exists an ordinal γ such that $K_{\beta} = K_{\gamma}$ if $\beta \geq \gamma$. We define $K = K(T, D) = K_{\gamma}$ and observe that cloo $T(K \cap D) = K$. The mapping T is called *ultimately compact* if either $K \cap D = \emptyset$ or if $T(K \cap D)$ is relatively compact.

DEFINITION 1. Let $D \subset X$ be open with $T: \overline{D} \to K(X)$ ultimately compact and such that $x \notin T(x)$ if $x \in \partial D$. If $K(T, \overline{D}) \cap D = \emptyset$ we define deg(I - I)(T, D, 0) = 0, and if $K(T, \overline{D}) \cap D \neq \emptyset$ we let ρ be a retraction of X onto $K(T, \overline{D})$ and define

AMS (MOS) subject classifications (1970). Primary 47H10; Secondary 47H99. Key words and phrases. Multivalued mappings, degree theory, fixed points, measure of noncompactness.

¹ Supported in part by the NSF grant GP-20228. ² Supported in part by the NSF grant GP-27719.

Copyright © American Mathematical Society 1973