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This announcement is a sequel to Greene-Wu [1], [2]. Here we shall 
concentrate on Kâhler manifolds of nonnegative curvature. Our first result 
improves Theorem 3 of [2], but the latter is needed in the proof of the 
former. 

THEOREM 1. Let M be a complete Kahler manifold with positive Ricci 
curvature and nonnegative-sectional curvature. Let K be the canonical bundle 
of M and let L be a holomorphic line bundle on M such that L ® K* > 0 
(K* denotes the dual o / K ; L ( g ) K * > 0 means that the line bundle L ® K* 
possesses a Hermitian metric of positive curvature). Then HP(M, &(L)) = 0 
forp ^ 1. 

The next theorem is the noncompact analogue of Kodaira's embedding 
theorem [4]. Its proof depends on Theorem 1 and is similar to Kodaira's 
proof in broad outline, but there are technical complications because of 
the noncompactness. 

THEOREM 2. Let M be a complete Kahler manifold with positive Ricci 
curvature and nonnegative sectional curvature. Then M possesses non-
constant meromorphic functions. Specifically, given any compact set K £ M, 
there exists a positive integer N and a meromorphic mapping (see Remmert 
[5]) cp.M -» PNC such that cp\K is a holomorphic embedding. 

In [2], we conjectured that every complete noncompact Kâhler manifold 
with positive sectional curvature must be a Stein manifold. The next 
theorem includes the solution of this conjecture as a special case. Recall 
that a subset S of a Riemannian manifold is convex if, for any p9qeS, at 
least one minimizing geodesic joining p and q lies in S. 

THEOREM 3. Let M be a complete Kahler manifold with positive Ricci 
curvature and nonnegative sectional curvature, and suppose that the 
canonical bundle of M is topologically trivial. Then every convex open subset 
of M is a Stein manifold. 

The fact that any open convex subset of such a manifold M is necessarily 
a Stein manifold should be compared with Theorem 7 of [1] ; of course the 
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