HOMOTOPY EQUIVALENCES WHICH ARE CELLULAR AT THE PRIME 2

BY N. LEVITT

Communicated by William Browder, November 6, 1972

0. We consider complexes having the property that the link of each point has the homology of S^{n-1} with coefficients in Z[1/odd]. Such complexes are called homology n-manifolds at the prime 2. Henceforth, all such spaces will be assumed to be 4-connected.

We state some salient facts.

LEMMA 1[a]. Let K^n be a 4-connected Poincaré duality space, v its Spivak normal fibration and T(v) the corresponding Thom spectrum. There is a spectrum $\mathcal{W}(v)$ and a map $p:\mathcal{W}(v) \to T(v)$ such that v is fiberhomotopically equivalent to a PL bundle if and only if p admits a section $s:T(v) \to \mathcal{W}(v)$.

We remind the reader of the construction of $\mathcal{W}(v)$ in §1 below, where we construct another spectrum $\mathcal{W}_{(2)}(v)$, with an obvious natural map $f: \mathcal{W}(v) \to \mathcal{W}_{(2)}(v)$ such that p factors as $\mathcal{W}(v) \to^f \mathcal{W}_{(2)}(v) \to^{p_{(2)}} T(v)$.

LEMMA 2. If the Poincaré duality space K^n is also a homology manifold at the prime 2, then $p_{(2)}: \mathcal{W}_{(2)}(v) \to T(v)$ admits a section.

Lemma 2 is a consequence of straightforward geometric facts concerning homology manifolds with coefficients, namely, that "general position theorems" of the right sort hold for these objects.

Now let G be the direct sum of countably many copies of Z_2 .

LEMMA 3. For the map $f: \mathcal{W}(v) \to \mathcal{W}_2(v)$, $\pi_i(f) = 0$, if $i \ge 5$, $\ne 4k$. If $i = 4k \ge 8$, then $\pi_i(f) = G$.

Lemma 3 is an abbreviation of Theorem A below. The main consequences are

THEOREM 1. Let M^n be a 4-connected Poincaré duality space which is a homology n-manifold at the prime 2. Then M^n has the homotopy type of a PL manifold provided a sequence of obstructions in $H^{4k}(M^n, G)$ vanish for all k such that 4k < n.

In reality, these obstructions are to be thought of as the Thom isomorphism images of the obstructions to lifting the section $s_{(2)}: T(v) \to \mathcal{W}_{(2)}(v)$ to a section $s: T(v) \to \mathcal{W}(v)$. Thus Theorem 1 is almost obvious by virtue of Lemmas 1, 2, 3. We only remark that if n = 4k, we do not need to worry

AMS (MOS) subject classifications (1970). Primary 57C15, 57C25.