HOMOTOPY EQUIVALENCES WHICH ARE CELLULAR AT THE PRIME 2

BY N. LEVITT
Communicated by William Browder, November 6, 1972

0 . We consider complexes having the property that the link of each point has the homology of S^{n-1} with coefficients in $Z[1 /$ odd $]$. Such complexes are called homology n-manifolds at the prime 2 . Henceforth, all such spaces will be assumed to be 4-connected.

We state some salient facts.
Lemma 1[a]. Let K^{n} be a 4-connected Poincaré duality space, vits Spivak normal fibration and $T(v)$ the corresponding Thom spectrum. There is a spectrum $\mathscr{W}(v)$ and a map $p: \mathscr{W}(v) \rightarrow T(v)$ such that v is fiberhomotopically equivalent to a PL bundle if and only if p admits a section $s: T(v) \rightarrow \mathscr{W}(v)$.

We remind the reader of the construction of $\mathscr{W}(v)$ in $\S 1$ below, where we construct another spectrum $\mathscr{W}_{(2)}(v)$, with an obvious natural map $f: \mathscr{W}(v) \rightarrow \mathscr{W}_{(2)}(v)$ such that p factors as $\mathscr{W}(v) \rightarrow^{f} \mathscr{W}_{(2)}(v) \rightarrow^{p_{(2)}} T(v)$.

Lemma 2. If the Poincaré duality space K^{n} is also a homology manifold at the prime 2 , then $p_{(2)}: \mathscr{W}_{(2)}(v) \rightarrow T(v)$ admits a section.

Lemma 2 is a consequence of straightforward geometric facts concerning homology manifolds with coefficients, namely, that "general position theorems" of the right sort hold for these objects.

Now let G be the direct sum of countably many copies of Z_{2}.
Lemma 3. For the map $f: \mathscr{W}(v) \rightarrow \mathscr{W}_{2}(v), \pi_{i}(f)=0$, if $i \geqq 5, \neq 4 k$. If $i=4 k \geqq 8$, then $\pi_{i}(f)=G$.

Lemma 3 is an abbreviation of Theorem A below. The main consequences are

Theorem 1. Let M^{n} be a 4-connected Poincaré duality space which is a homology n-manifold at the prime 2. Then M^{n} has the homotopy type of a PL manifold provided a sequence of obstructions in $H^{4 k}\left(M^{n}, G\right)$ vanish for all k such that $4 k<n$.

In reality, these obstructions are to be thought of as the Thom isomorphism images of the obstructions to lifting the section $s_{(2)}: T(v) \rightarrow \mathscr{W}_{(2)}(v)$ to a section $s: T(v) \rightarrow \mathscr{W}(v)$. Thus Theorem 1 is almost obvious by virtue of Lemmas $1,2,3$. We only remark that if $n=4 k$, we do not need to worry

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 57C15, 57C25.

