CLASS NUMBERS OF DEFINITE QUATERNARY FORMS WITH NONSQUARE DISCRIMINANT

BY PAUL PONOMAREV¹

Communicated by Nathan Jacobson, November 2, 1972

1. Introduction. Let V be a definite quadratic space of dimension four over the field of rational numbers Q. If the discriminant $\Delta(V)$ is square, then the number of classes of maximal integral lattices can be computed by means of the formulas given by the author in [6] and [7]. The purpose of this note is to announce analogous class number formulas for the case where $\Delta(V)$ is not square, V_p is isotropic for each finite prime p, and the norm of the fundamental unit of $K = Q((\Delta(V))^{1/2})$ is -1.

Let \mathfrak{M} denote the genus of maximal integral lattices of V, \mathfrak{I} the idealcomplex containing \mathfrak{M} . Let Δ denote the discriminant of \mathfrak{M} . Then \mathfrak{I} can also be described as the set of all maximal lattices having reduced determinant Δ [1, p. 87]. The formulas we present here are for the number of (proper) similitude classes in \Im . We denote this class number by H. The number of classes in \mathfrak{M} will be denoted by H_0 . The ideal complex \mathfrak{I} decomposes into g^+ similitude genera, where g^+ = the number of strict genera of K [5, p. 338]. The similitude genus containing \mathfrak{M} has H_0 similitude classes. It follows that $H_0 \leq H$. Equality holds if and only if K has prime discriminant, since $g^+ = 1$ in that case (cf. Corollary below).

2. Preliminaries. Let C_{V}^{+} denote the second Clifford algebra of V. Then $C_V^+ = \mathfrak{A}_K = \mathfrak{A} \otimes_{\mathbf{0}} K$, where \mathfrak{A} is a definite quaternion algebra over Q. Let $\alpha \mapsto \alpha^*$ be the canonical involution of \mathfrak{A}_K and $N : \mathfrak{A}_K \to K$ the (reduced) norm mapping. The conjugation $x \mapsto \overline{x}$ of K can be extended to a Qautomorphism $\alpha \mapsto \overline{\alpha}$ of \mathfrak{A}_K so that \mathfrak{A} is its ring of fixed elements. Let W be the set of all α in \mathfrak{A}_{K} such that $\alpha = \overline{\alpha}^{*}$. Then W is a four-dimensional Qsubspace of \mathfrak{A}_{K} and the restriction of N to W takes values in Q. In this way W may be regarded as a quadratic space over Q. We assume, without loss of generality, that V is positive definite. Then V is isometric to W. In particular, the condition that V_p is isotropic for every finite prime p is equivalent to the condition that \mathfrak{A} splits at every finite prime which splits in K. From this it follows, by a straightforward computation of local discriminants, that

(1)
$$\Delta = \Delta_{\mathbf{K}} (p_1 \cdots p_e)^2,$$

where Δ_K is the discriminant of K and p_1, \ldots, p_e are all the nonsplit finite

Copyright © American Mathematical Society 1973

AMS (MOS) subject classifications (1970). Primary 10C05, 12A80; Secondary 12A85. ¹ Partially supported by NSF grant GP-25320.