EQUILIBRIUM POSITIONS FOR EQUALLY CHARGED PARTICLES ON A SURFACE ${ }^{1}$

BY JAMES H. WHITE
Communicated by S. S. Chern, November 9, 1972

> AbSTRACT. This paper gives a lower bound for the number of equilibrium positions of two or three equally charged particles on an imbedded surface in Euclidean n-space.

Let $f: M \rightarrow E^{n}$ be a $C^{k}(k \geqq 2)$ imbedding of a closed orientable surface into Euclidean n-space which is generic in a certain sense. This paper announces results on the lower bounds for the number of equilibrium positions of two or three equally charged particles on $f(M)$ and indicates, thereby, the manner in which the general case can be studied. For simplicity all charges are assumed to be +1 .

1. The 2 particle case. The imbedding $f: M \rightarrow E^{n}$ is said to be V-generic (potential-generic) if the function $V_{f}: M \times M-D \rightarrow \mathrm{R}$ defined on $M \times M$ outside of the diagonal D by

$$
V_{f}(x, y)=1 /\|f(x)-f(y)\|
$$

satisfies the property that on $M \times M-D$ all its critical points are nondegenerate. (Any $C^{k}(k \geqq 2)$ imbedding of M satisfies the property that there exists a real number N such that, if $V_{f}(x, y) \geqq N,(x, y)$ cannot be a critical point of V_{f}.)
V_{f} can be easily recognized to be the potential of two unit charges on $f(M)$, so that the critical points of V_{f} are in fact the equilibrium positions. To compute the lower bound for the number of such positions, one observes that on $M \times M-D$, the critical points of V_{f} are the same as those of the function V_{f}^{-2}, that is, the function which assigns to (x, y) the number $\|f(x)-f(y)\|^{2}$. One may then apply the work of [1] to obtain

Theorem 1. Let $f: M \rightarrow E^{n}$ be a V-generic imbedding of a surface of genus g into E^{n}. Then the lower bound for the number of equilibrium positions of two equally charged particles on $f(M)$ is $2 g^{2}+3 g+3$.
2. The 3 particle case. The 3 particle case is exceedingly more difficult because of the homology theory involved and thereby gives an indication of the difficulty of the general case.

Consider the triple cartesian product of M with itself, $M \times M \times M$,

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 58E05; Secondary 70F10.
 Key words and phrases. Equilibrium positions, charged particles, Morse theory, potential, lower bound.
 ${ }^{1}$ Preparation of this paper was supported in part by NSF Grant No. GP-27576.

