ON THE DISGRETE REPRESENTATIONS OF THE GENERAL LINEAR GROUPS OVER A FINITE FIELD

BY G. LUSZTIG
Communicated by Michael F. Atiyah, October 9, 1972

Abstract

In this note we present a construction for a distinguished representation in the discrete series of $G L_{n}(F), F$ a finite field. This is used in describing explicitly Brauer's lifting of the identity representation of $G L_{n}(F)$.

Let V be a vector space of dimension $n \geqq 2$ over a finite field F with q elements. Let W_{F} be the ring of Witt vectors associated to F (see Serre [4,I, §6]) and K_{F} its field of fractions. Denote by $x \rightarrow \bar{x}$ the canonical ring homomorphism $W_{F} \rightarrow F$ and by $y \rightarrow \tilde{y}$ the canonical multiplicative homomorphism $F^{*} \rightarrow W_{F}$ such that $\tilde{y}^{-}=y$ for $y \in F^{*}$.

Our purpose is to construct explicitly a free W_{F}-module $D(V)$ associated canonically to V, which regarded as a representation of $G L(V)$ belongs to the discrete series, i.e. its character is a cusp form on $G L(V)$. We could call $D(V)$ the distinguished representation of the discrete series of $G L(V)$.

The construction is as follows (the details will appear elsewhere). Let X be the set of all sequences ($A_{0} \subset A_{1} \subset A_{2} \subset \cdots \subset A_{n-1}$) of affine subspaces of $V\left(\operatorname{dim} A_{i}=i\right)$ which are away from the origin, i.e. $0 \notin A_{n-1}$. Let \mathscr{F} be the set of all functions $f: X \rightarrow W_{F}$. Consider the subset $\mathscr{F}^{\prime} \subset \mathscr{F}$ consisting of all f 's satisfying
(1) Given any fixed sequence ($A_{0} \subset A_{1} \subset \cdots \subset A_{i-1} \subset A_{i+1} \subset \cdots \subset$ A_{n-1}) of affine subspaces of V away from the origin and a variable A_{i} between A_{i-1} and A_{i+1} away from the origin (there are q choices for A_{i} if $i=0, n-1$ and $q+1$ choices if $0<i<n-1$), we have

$$
\sum_{A_{i}} f\left(A_{0} \subset A_{1} \subset \cdots \subset A_{i-1} \subset A_{i} \subset A_{i+1} \subset \cdots \subset A_{n-1}\right)=0
$$

Define $\mathscr{F}_{-1}^{\prime}$ as the set of all $f \in \mathscr{F}^{\prime}$ satisfying the homogeneity condition
(2) $f\left(\lambda A_{0} \subset \lambda A_{1} \subset \cdots \subset \lambda A_{n-1}\right)=\tilde{\lambda}^{-1} f\left(A_{0} \subset A_{1} \subset \cdots \subset A_{n-1}\right)$, $\forall \lambda \in F^{*}$.

It is clear that $\mathscr{F}, \mathscr{F}^{\prime}, \mathscr{F}_{1}^{\prime}$ are finitely generated free W_{F}-modules. Define a W_{F}-linear map $t: \mathscr{F} \rightarrow \mathscr{F}$ by the formula
(3) $(t f)\left(A_{0} \subset A_{1} \subset \cdots \subset A_{n-1}\right)=(-1)^{n-1} \sum f\left(A_{0}^{\prime} \subset A_{1}^{\prime} \subset \cdots \subset A_{n-1}^{\prime}\right)$, where the sum is extended over all $\left(A_{0}^{\prime} \subset A_{1}^{\prime} \subset \cdots \subset A_{n-1}^{\prime}\right)$ in X such that $A_{0}^{\prime} \in A_{n-1}-A_{n-2}, A_{1}^{\prime}\left\|0 A_{0}, A_{2}^{\prime}\right\| 0 A_{1}, \ldots, A_{n-1}^{\prime} \| 0 A_{n-2}$ (observe that once A_{0}^{\prime} is chosen, the A_{i}^{\prime} 's for $i>0$ are automatically determined so that

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 20G40.

