BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 79, Number 3, May 1973

TOPOLOGIES ON SPACES OF BAIRE MEASURES

BY R. B. KIRK

Communicated by R. Creighton Buck, November 6, 1972

Introduction. Let X be a completely regular, Hausdorff space, let C be the space of real-valued continuous functions on X and let C^b be the subspace of C consisting of the uniformly bounded continuous functions on X. The Banach dual of C^b (for the uniform norm) will be denoted by M, and the subspace of M consisting of all totally-finite, signed Baire measures on X will be denoted by M_{σ} . (Recall that the algebra of Baire sets is the smallest σ -algebra of subsets of X for which each of the functions in C is measurable.) Finally, the space of signed measures in M_{σ} which have finite support will be denoted by L. By identifying each point of X with the Dirac measure at that point we may assume that X is a subset of L (and hence of M_{c}). The purpose of the present note is to describe some results recently obtained by the author concerning completions of L relative to certain natural locally convex topologies on L, and some applications of these results. (For the proofs and for further details, the reader is referred to [5] and [6].) The principal results are essentially generalizations to arbitrary spaces of the following theorem due to M. Katětov and V. Ptak. (See [3], **[4]** and **[8]**.)

THEOREM. Let X be pseudocompact. Then the completion of L for the topology of uniform convergence on the pointwise bounded, equicontinuous subsets of C is the space M_{σ} (= M).

In order to avoid certain technical difficulties in the discussion, we will assume throughout the paper that X has a nonmeasurable cardinal. (As is well known, it is consistent with the axioms of set theory to assume that there are no measurable cardinals.) For a discussion of the results in the presence of measurable cardinals, the reader is referred to [5] and [6].

1. The topology e^b . A set $B \subset C$ is equicontinuous if for all $x \in X$ and for every positive number ε , there is a neighborhood U of x such that $|f(x) - f(y)| \leq \varepsilon$ for all $y \in U$ and all $f \in B$. The set B is uniformly bounded if there is a number K such that $|f(x)| \leq K$ for all $f \in B$ and all $x \in X$. Let \mathscr{E}^b denote the family of all uniformly bounded, equicontinuous subsets of C^b ; and let e^b denote the topology on M_{σ} of uniform convergence on the sets in \mathscr{E}^b . It is easily verified that e^b is a locally convex topology on M_{σ} . We then have the following result:

AMS (MOS) subject classifications (1970). Primary 46A30, 60B10; Secondary 60B05.

Key words and phrases. Baire measures, weak convergence of Baire measures, complete spaces of Baire measures.