NONUNIFORMLY ELLIPTIC EQUATIONS: POSITIVITY OF WEAK SOLUTIONS

BY C. V. COFFMAN ${ }^{1}$, R. J. DUFFIN ${ }^{2}$ AND V. J. MIZEL ${ }^{3}$
Communicated by Philip Hartman, August 17, 1972

1. This note is concerned with the weak boundary value problem

$$
\begin{equation*}
\int_{\Omega}\left(\sum_{i, j=1}^{N} a_{i j}(x) u_{x_{i}} v_{x_{i}}+b(x) u v\right) d x=\int_{\Omega} c(x) f v d x, \text { all } v \in C_{0}^{\infty}(\Omega), \tag{1}
\end{equation*}
$$

and the weak eigenvalue problem

$$
\begin{equation*}
\int_{\Omega}\left(\sum_{i, j=1}^{N} a_{i j}(x) u_{x_{i}} v_{x_{i}}+b(x) u v\right) d x=\lambda \int_{\Omega} c(x) u v d x, \quad \text { all } v \in C_{0}^{\infty}(\Omega), \tag{2}
\end{equation*}
$$

where Ω is a connected open set in R^{N}. Our hypothesis concerning the coefficient matrix $\left(a_{i j}\right)$ in (1) and (2) is similar to but weaker than those imposed on the elliptic operators which are studied in [2], [3], [4]. Specifically, we assume that $A=\left(a_{i j}\right)$ is a real matrix-valued function, symmetric and positive definite almost everywhere on Ω with

$$
\begin{equation*}
\|A\|,\left\|A^{-1}\right\| \in L_{\mathrm{loc}}^{1}(\Omega) \tag{3}
\end{equation*}
$$

Concerning the coefficients b, c our assumptions are the following: b and c are real valued,

$$
\begin{equation*}
M b \geqq c>0 \quad \text { a.e. on } \Omega \tag{4}
\end{equation*}
$$

for some positive constant M and

$$
\begin{equation*}
b, b^{-1}, c \in L_{\mathrm{loc}}^{1}(\Omega) . \tag{5}
\end{equation*}
$$

Under these assumptions we prove: If $f \in L^{2}(\Omega, c(x) d x), f(x) \geqq 0$ a.e. on Ω and $f \neq 0$ then (1) has a solution positive almost everywhere on Ω, in particular a nonnegative eigenfunction of (2) is positive almost everywhere in Ω; if (2) has a nonnegative eigenfunction corresponding to an eigenvalue $\lambda_{1}>0$ then λ_{1} is simple and the spectrum of (2) is contained in the interval $\left[\lambda_{1}, \infty\right]$.

This research was motivated by certain problems arising in connection with the study in [1] of nonlinear elliptic eigenvalue problems.

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 35J20, 35J25.
 Key words and phrases. Nonuniformly elliptic, positive solutions, eigenvalue problem, boundary value problem.
 ${ }_{2}^{1}$ Research partially supported by National Science Foundation under grant GP-21512.
 ${ }^{2}$ Research partially supported by Army Research Office (Durham) under research grant DA-AROD-31-124-71-G17.
 ${ }^{3}$ Research partially supported by the National Science Foundation under grant GP-28377.

