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1. Introduction. Let £li9 i = 1, 2, be regions in the complex plane, f(z) 
a quasiconformal mapping of Cll onto Q2- Let Qf denote the class of all 
quasiconformal mappings of Q t onto Q2 which have the same boundary 
values as ƒ A mapping ƒ * e Qf will be called extremal for its boundary 
values if it is iC*-quasiconformal and if there exists no K-quasiconformal 
mapping in Qf with K < K*. The quantity iC* = K*(f) is the extremal 
dilatation for the class Qf. (As is well known [3], there may be more than 
one X*-quasiconformal mapping in the class Qf.) In the present account, 
which is only an abstract, we restrict ourselves to the case Q1 = Q2 — E 
= {\z\ < 1}. Generalizations to Riemann surfaces will be referred to in a 
detailed account, giving proofs, further results, and applications that is to 
appear elsewhere. 

In what follows, the L1 norm ƒ J£ \<p(z)\ dxdy of functions cp(z) holo-
morphic in E will be denoted by \\q>\\. 

In 1969, R. S. Hamilton [1] proved the following: If ƒ* e Qf is an 
extremal mapping, K*(Z) = ƒ*/ƒ*, then 

(1.1) sup K*(z)(p(z) dx dy 
IMI<1 JJ 

K*( f) - 1 
u ; K*(f) + 1 

A central result of the present work is (§3) that condition (1.1) charac
terizes extremal mappings of E. 

2. Estimates for K*(f). The following is a generalization of an inequality 
proved in [2] from the case K*(ƒ) = 1 to arbitrary K*(f). 

THEOREM 2.1. Iff(z) is a quasiconformal self-mapping of E, K(Z) = f-z\fz, 
and if cp(z) is holomorphic in £, then 

\ \ 

K(Z) 

q>(z)dxdy \-\K(Z)\ 
< IMI 

( 2 - ] ) CC \K(Z)\2 

\+k*(f)' 
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