EXTREMAL PLANE QUASICONFORMAL MAPPINGS WITH GIVEN BOUNDARY VALUES

BY EDGAR REICH AND KURT STREBEL Communicated by F. W. Gehring, October 23, 1972

1. Introduction. Let Ω_i , i = 1, 2, be regions in the complex plane, f(z) a quasiconformal mapping of Ω_1 onto Ω_2 . Let Q_f denote the class of all quasiconformal mappings of Ω_1 onto Ω_2 which have the same boundary values as f. A mapping $f^* \in Q_f$ will be called *extremal* for its boundary values if it is K^* -quasiconformal and if there exists no K-quasiconformal mapping in Q_f with $K < K^*$. The quantity $K^* = K^*(f)$ is the extremal dilatation for the class Q_f . (As is well known [3], there may be more than one K^* -quasiconformal mapping in the class Q_f .) In the present account, which is only an abstract, we restrict ourselves to the case $\Omega_1 = \Omega_2 = E = \{|z| < 1\}$. Generalizations to Riemann surfaces will be referred to in a detailed account, giving proofs, further results, and applications that is to appear elsewhere.

In what follows, the L^1 norm $\iint_E |\varphi(z)| dx dy$ of functions $\varphi(z)$ holomorphic in E will be denoted by $||\varphi||$.

In 1969, R. S. Hamilton [1] proved the following: If $f^* \in Q_f$ is an extremal mapping, $\kappa^*(z) = f_{\overline{z}}^*/f_z^*$, then

(1.1)
$$\sup_{\||\varphi\|| \leq 1} \left| \int_{E} \kappa^{*}(z)\varphi(z) \, dx \, dy \right| = k^{*}(f) = \frac{K^{*}(f) - 1}{K^{*}(f) + 1}.$$

A central result of the present work is (\$3) that condition (1.1) characterizes extremal mappings of E.

2. Estimates for $K^*(f)$. The following is a generalization of an inequality proved in [2] from the case $K^*(f) = 1$ to arbitrary $K^*(f)$.

THEOREM 2.1. If f(z) is a quasiconformal self-mapping of E, $\kappa(z) = f_{\overline{z}}/f_z$, and if $\varphi(z)$ is holomorphic in E, then

(2.1)
$$\left| \iint_{E} \frac{\kappa(z)}{1 - |\kappa(z)|^{2}} \varphi(z) \, dx \, dy \right| \leq \frac{k^{*}(f)}{1 + k^{*}(f)} \|\varphi\| + \iint_{E} \frac{|\kappa(z)|^{2}}{1 - |\kappa(z)|^{2}} |\varphi(z)| \, dx \, dy.$$

AMS (MOS) subject classifications (1970). Primary 30A60. ¹ Supported by GP 27275.

Copyright © American Mathematical Society 1973