STOCHASTIC INTEGRALS AND PARABOLIC EQUATIONS IN ABSTRACT WIENER SPACE

BY HUI-HSIUNG KUO¹ AND M. ANN PIECH² Communicated by Lee A. Rubel, September 6, 1972

Kuo [2] has developed a theory of stochastic integrals and Piech [3] has established the existence of fundamental solutions of a class of parabolic equations, both working within the context of abstract Wiener space. In this note we establish the relationship between the work of Kuo and Piech, and as a consequence of this relationship we obtain a uniqueness theorem for fundamental solutions. We also provide a new proof of the nonnegativity and semigroup properties of fundamental solutions.

Let H be a real separable Hilbert space, with inner product (,) and norm $|\cdot|$; let $||\cdot||$ be a fixed measurable norm on H; let B be the completion of H with respect to $\|\cdot\|$; and let *i* denote the natural injection of H into B. The triple (H, B, i) is an abstract Wiener space in the sense of Gross [1]. We may regard $B^* \subset H^* \approx H \subset B$ in the natural fashion. A bounded linear operator from B to B^* may thus be viewed as an operator on B or, by restriction to H, as an operator on H. The restriction to H of a member T of $L(B, B^*)$ is of trace class in $L(H) (\equiv L(H, H))$ and

 $\|T_{|H}\|_{\mathrm{Tr}} \leq \mathrm{constant} \cdot \|T\|_{L(B,B^*)}.$

Where no confusion of interpretation is possible, we will use T for T_{1H} . In order to work with stochastic integrals on (H, B, i) we formulate the following hypothesis:

(h) There exists an increasing sequence $\{P_n\}$ of finite dimensional projections on B such that $P_n[B] \subset B^*$, $\{P_n\}$ converges strongly to the identity on B, and $\{P_{n|H}\}$ converges strongly to the identity on H.

For t > 0, let p, denote the Wiener measure on the Borel field of B which is determined by Gauss cylinder set measure on H of variance parameter t. Let Ω be the space of continuous functions ω from $[0, \infty)$ into B and vanishing at zero, and let \mathcal{M} be the σ -field of Ω generated by the functions $\omega \to \omega(t)$. Then there is a unique probability measure \mathscr{P} on \mathscr{M} for which the condition $0 = t_0 < t_1 < \cdots < t_n$ implies that $\omega(t_{i+1}) - \omega(t_i)$, $0 \leq j \leq n-1$, are independent and $\omega(t_{j+1}) - \omega(t_j)$ has distribution

Copyright © American Mathematical Society 1973

AMS(MOS) subject classifications (1970). Primary 28A40, 60H05, 35K15. Key words and phrases. Abstract Wiener space, stochastic integrals, parabolic equation, fundamental solution.

 ¹ Research supported by NSF grant GP-19617.
² Research supported by NSF grants GP-19651 and GP-28934.