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1. This work grew from a study of the conditions under which a Gaussian 
stochastic process has a "smooth" local time for almost all sample 
functions [l]-[4]. It is shown here that the main calculation in our 
previous work involves a property of Gaussian processes which is of 
independent interest—local nondeterminism. Let X(t\ — oo < t < oo, 
be a Gaussian process with mean 0, and J an open interval on the t-axis. 
Suppose that 

(1) E[X(t)]2 > 0 and E[X(t) - X(s)]2 > 0, for all s and t in J. 

For arbitrary tx < • • • < tmi where tjeJ, form the ratio Vm of the con
ditional to the unconditional variance : 

= Var[Z(Q - •Yfa.-JIXfo),..., X(tm^)} 

Var[X(U-X(t m - i ) ] 

The numerator represents the error of prediction of X(tm) — X(tm_l) 
based on X{tx\..., X(tm„ x). X is called locally nondeterministic on J if 

(2) lim inf Vm > 0, for every m ^ 2. 

This is a local version of the classical notion of nondeterminism: it 
signifies that an observation is "relatively unpredictable" on the basis 
of a finite set of observations from the immediate past. 

We find conditions under which the members of certain classes of 
Gaussian processes are locally nondeterministic: for example, processes 
of multiplicity 1, processes with stationary increments, and others. 

2. Local nondeterminism means that there is an unremovable element 
of "noise" in the local evolution of the sample function. We expect such 
a function to be "locally irregular". And so it is: We show that local 
nondeterminism is one of the two main sufficient conditions in our result 
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