LOCAL NONDETERMINISM AND LOCAL TIMES OF GAUSSIAN PROCESSES ${ }^{1}$

BY SIMEON M. BERMAN
Communicated by H. Kesten, October 18, 1972

1. This work grew from a study of the conditions under which a Gaussian stochastic process has a "smooth" local time for almost all sample functions [1]-[4]. It is shown here that the main calculation in our previous work involves a property of Gaussian processes which is of independent interest-local nondeterminism. Let $X(t),-\infty<t<\infty$, be a Gaussian process with mean 0 , and J an open interval on the t-axis. Suppose that

$$
\begin{equation*}
E[X(t)]^{2}>0 \quad \text { and } \quad E[X(t)-X(s)]^{2}>0, \quad \text { for all } s \text { and } t \text { in } J \tag{1}
\end{equation*}
$$

For arbitrary $t_{1}<\cdots<t_{m}$, where $t_{j} \in J$, form the ratio V_{m} of the conditional to the unconditional variance:

$$
V_{m}=\frac{\operatorname{Var}\left[X\left(t_{m}\right)-X\left(t_{m-1}\right) \mid X\left(t_{1}\right), \ldots, X\left(t_{m-1}\right)\right]}{\operatorname{Var}\left[X\left(t_{m}\right)-X\left(t_{m-1}\right)\right]} .
$$

The numerator represents the error of prediction of $X\left(t_{m}\right)-X\left(t_{m-1}\right)$ based on $X\left(t_{1}\right), \ldots, X\left(t_{m-1}\right) . X$ is called locally nondeterministic on J if

$$
\begin{equation*}
\lim _{c \downarrow 0} \inf _{t_{m}-t_{1} \leqq c} V_{m}>0, \text { for every } m \geqq 2 \tag{2}
\end{equation*}
$$

This is a local version of the classical notion of nondeterminism: it signifies that an observation is "relatively unpredictable" on the basis of a finite set of observations from the immediate past.

We find conditions under which the members of certain classes of Gaussian processes are locally nondeterministic: for example, processes of multiplicity 1 , processes with stationary increments, and others.
2. Local nondeterminism means that there is an unremovable element of "noise" in the local evolution of the sample function. We expect such a function to be "locally irregular". And so it is: We show that local nondeterminism is one of the two main sufficient conditions in our result

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 60G10, 60G15, 60G17; Secondary 60G25.

 Key words and phrases. Local nondeterminism, local time, Gaussian process, multiplicity 1 , stationary increments, sample function properties.
 ${ }^{1}$ This paper represents results obtained at the Courant Institute of Mathematical Sciences, New York University, under the sponsorship of the National Science Foundation Grant NSF-GP-28651.

