APPELL POLYNOMIALS WHOSE GENERATING FUNCTION IS MEROMORPHIC ON ITS CIRCLE OF CONVERGENCE

BY J. D. BUCKHOLTZ

Communicated by W. T. Martin, October 19, 1972

Let $\Phi(z) = \sum_{0}^{\infty} \beta_j z^j$ have radius of convergence $r (0 < r < \infty)$ and no singularities other than poles on the circle |z| = r. The Appell polynomials generated by Φ are given by

$$\pi_k(z) = \sum_{j=0}^k \beta_{k-j} z^j / j!, \qquad k = 0, 1, 2, \cdots.$$

An entire function g is said to possess a $\{\pi_k\}$ expansion if there is a complex sequence $\{h_k\}_0^\infty$ such that

(1)
$$\sum_{k=0}^{\infty} h_k \pi_k(z)$$

converges uniformly on compact sets to g(z). In this note we show that the family of functions which have $\{\pi_k\}$ expansions is completely determined by the poles of Φ on |z| = r together with the zeros of Φ in the closed disk $|z| \leq r$.

Set $\Phi(z) = T(z)\phi_1(z)/P(z)$, where ϕ_1 is analytic and zero-free in $|z| \leq r$ and T and P are polynomials whose zeros correspond respectively to the zeros of Φ in $|z| \leq r$ and the poles of Φ on |z| = r. Let

$$P(z) = \prod_{q=1}^{\lambda} (1 - \alpha_q z)^{m(q)},$$

where m(q) denotes the multiplicity of the pole α_q^{-1} of Φ , and let $m = \max m(q)$, $1 \le q \le \lambda$. It is relatively easy to characterize those complex sequences $\{h_k\}_0^\infty$ for which (1) converges. The following result was proved in [2], and can also be obtained as a special case of a theorem of W. T. Martin [3].

THEOREM A. If $\{h_k\}_0^\infty$ is a complex sequence, then the following are equivalent:

(i) each of the series

$$\sum_{k=0}^{\infty} \binom{k+m(q)-1}{m(q)-1} h_k \alpha_q^k, \qquad 1 \leq q \leq \lambda,$$

converges;

AMS (MOS) subject classifications (1970). Primary 30A62; Secondary 30A16. Key words and phrases. Appell polynomials, polynomial expansions.

Copyright © American Mathematical Society 1973