THE L^p -INTEGRABILITY OF THE PARTIAL DERIVATIVES OF A QUASICONFORMAL MAPPING

BY F. W. GEHRING¹ Communicated October 11, 1972

ABSTRACT. Suppose that $f: D \to R^n$ is an *n*-dimensional *K*-quasiconformal mapping. Then the first partial derivatives of f are locally L^p -integrable in D for $p \in [1, n + c)$, where c is a positive constant which depends only on K and n.

Suppose that D is a domain in Euclidean n-space R^n where $n \ge 2$, and that $f: D \to R^n$ is a homeomorphism. For each $x \in D$ we let

$$L_f(x) = \limsup_{y \to x} |f(y) - f(x)|/|y - x|,$$

$$J_f(x) = \limsup_{r \to 0} m(f(B(x, r)))/m(B(x, r)),$$

where B(x, r) denotes the open *n*-dimensional ball of radius r about x and m denotes Lebesgue measure in R^n . We call $L_f(x)$ and $J_f(x)$, respectively, the maximum stretching and generalized Jacobian for the homeomorphism f at the point x. These functions are nonnegative and measurable in D, and Lebesgue's theorem implies that J_f is locally L^1 -integrable there.

Suppose in addition that f is K-quasiconformal in D. Then $L_f^n \leq KJ_f$ a.e. in D, and thus L_f is locally L^n -integrable in D. Bojarski has shown in [1] that a little more is true in the case where n=2, namely that L_f is locally L^p -integrable in D for $p \in [2, 2+c)$, where c is a positive constant which depends only on K. His proof consists of applying the Calderón-Zygmund inequality [2] to the Hilbert transform which relates the complex derivatives of a normalized plane quasiconformal mapping. Unfortunately this elegant two-dimensional argument does not suggest what the situation is when n > 2.

The purpose of this note is to announce the following n-dimensional version of Bojarski's theorem.

THEOREM. Suppose that D is a domain in R^n and that $f:D \to R^n$ is a K-quasiconformal mapping. Then L_f is locally L^p -integrable in D for $p \in [1, n + c)$, where c is a positive constant which depends only on K and n.

This result is derived from the following two lemmas. The first is an inequality relating the L^1 - and L^n -means of L_f over small n-cubes, while

AMS (MOS) subject classifications (1970). Primary 30A60; Secondary 30A86.

¹ This research was supported in part by the U.S. National Science Foundation, Contract GP-28115, and by a Research Grant from the Institut Mittag-Leffler.