BOUNDARY VALUES IN CHROMATIC GRAPH THEORY

BY MICHAEL O. ALBERTSON AND HERBERT S. WILF ${ }^{1}$
Communicated by Olga Taussky Todd, October 23, 1972

Let G be a planar graph drawn in the plane so that its outer boundary Γ is a k-cycle. A four-coloring of Γ is admissible if it extends to a four-coloring of all of G. Let ψ be the number of admissible boundary colorings, and we suppose the truth of the Four-Color Conjecture in the theorems marked with a * below.

Conjecture. $\psi \geqq 3 \cdot 2^{k}(k=3,4, \ldots)$. (The sign of equality holds if G is a triangulation of a k-cycle with no interior vertices.)
*THEOREM 1 . $\psi \geqq 24 F_{k-1} \geqq C\left(\left(1+5^{1 / 2}\right) / 2\right)^{k}$, where F_{k} is the kth Fibonacci number.
*Theorem $2 . \psi \geqq 3 \cdot 2^{k}$ for $k=3,4,5,6$.
A graph is totally reducible (t.r.) if every four-coloring of the boundary is admissible (i.e., $\psi=3^{k}+(-1)^{k} \cdot 3$).

Theorem 3. For each k there is a t.r. graph G whose boundary is a k-cycle and whose interior is a triangulation.

An annulus $G_{k l}$ is an l-cycle drawn interior to a k-cycle, with a maximum number of nonintersecting edges connecting the two cycles. The vertices of the l-cycle are $u_{1}, u_{2}, \ldots, u_{l}$, and $\rho(u)$ is the valence of the vertex u.

Theorem 4. An annulus $G_{k l}$ is t.r. iff it has none of the following properties: (1) $\rho\left(u_{1}\right) \geqq 6$; (2) $\rho\left(u_{i}\right)=\rho\left(u_{j}\right)=5(j \leqq k-3)$ and $\rho\left(u_{i}\right)=4$ for all i in $1<i<j$; (3) $\rho\left(u_{1}\right)=\rho\left(u_{j}\right)=5, \rho\left(u_{i}\right)=4$ for all i in $1<i<j, j=k-2$, k even; (4) $\rho\left(u_{1}\right)=5, \rho\left(u_{i}\right)=4$ for all $1<i<l$, l odd.
*Theorem 5. An annulus $G_{k l}$ satisfies the Conjecture stated above.
Proofs will appear elsewhere.

References

1. G. D. Birkhoff and D. C. Lewis, Chromatic polynomials, Trans. Amer. Math. Soc. 60 (1946), 355-451. MR 8, 284.
2. A. B. Kempe, On the geographical problem of four colors, Amer. J. Math. 2 (1879), 193-200.
3. W. T. Tutte, On chromatic polynomials and the golden ratio, J. Combinatorial Theory 9 (1970), 289-296. MR 42 \# 7557.
4. , The golden ratio in the theory of chromatic polynomials, Internat. Conference on Combinatorial Math. (1970), Ann. New York Acad. Sci. 175 (1970), 391-402. MR 42 \# 130 .

Department of Mathematics, Swarthmore College, Swarthmore, Pennsylvania 19081

Department of Mathematics, University of Pennsylvania, Philadelphia, PennsylVania 19104

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 05C15.
 ${ }^{1}$ Research supported in part by the National Science Foundation.

