BOUNDARY VALUES IN CHROMATIC GRAPH THEORY

BY MICHAEL O. ALBERTSON AND HERBERT S. WILF¹ Communicated by Olga Taussky Todd, October 23, 1972

Let G be a planar graph drawn in the plane so that its outer boundary Γ is a k-cycle. A four-coloring of Γ is *admissible* if it extends to a four-coloring of all of G. Let ψ be the number of admissible boundary colorings, and we suppose the truth of the Four-Color Conjecture in the theorems marked with a * below.

CONJECTURE. $\psi \ge 3 \cdot 2^k$ (k = 3, 4, ...). (The sign of equality holds if G is a triangulation of a k-cycle with no interior vertices.)

*THEOREM 1. $\psi \ge 24F_{k-1} \ge C((1+5^{1/2})/2)^k$, where F_k is the kth Fibonacci number.

*THEOREM 2. $\psi \ge 3 \cdot 2^k$ for k = 3, 4, 5, 6.

A graph is *totally reducible* (t.r.) if every four-coloring of the boundary is admissible (i.e., $\psi = 3^k + (-1)^k \cdot 3$).

THEOREM 3. For each k there is a t.r. graph G whose boundary is a k-cycle and whose interior is a triangulation.

An annulus G_{kl} is an *l*-cycle drawn interior to a *k*-cycle, with a maximum number of nonintersecting edges connecting the two cycles. The vertices of the *l*-cycle are u_1, u_2, \ldots, u_l , and $\rho(u)$ is the valence of the vertex u.

THEOREM 4. An annulus G_{kl} is t.r. iff it has none of the following properties: (1) $\rho(u_1) \ge 6$; (2) $\rho(u_i) = \rho(u_i) = 5$ ($j \le k - 3$) and $\rho(u_i) = 4$ for all *i* in 1 < i < j; (3) $\rho(u_1) = \rho(u_j) = 5$, $\rho(u_i) = 4$ for all *i* in 1 < i < j, j = k - 2, k even; (4) $\rho(u_1) = 5$, $\rho(u_i) = 4$ for all 1 < i < l, l odd.

*THEOREM 5. An annulus G_{kl} satisfies the Conjecture stated above. Proofs will appear elsewhere.

REFERENCES

1. G. D. Birkhoff and D. C. Lewis, Chromatic polynomials, Trans. Amer. Math. Soc. 60 (1946), 355-451. MR 8, 284.

2. A. B. Kempe, On the geographical problem of four colors, Amer. J. Math. 2 (1879),

193–200.
3. W. T. Tutte, On chromatic polynomials and the golden ratio, J. Combinatorial Theory 9

4. -, The golden ratio in the theory of chromatic polynomials, Internat. Conference on Combinatorial Math. (1970), Ann. New York Acad. Sci. 175 (1970), 391-402. MR 42 #130.

DEPARTMENT OF MATHEMATICS, SWARTHMORE COLLEGE, SWARTHMORE, PENNSYLVANIA 19081

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PENNSYL-**VANIA 19104**

AMS (MOS) subject classifications (1970). Primary 05C15. ¹ Research supported in part by the National Science Foundation.