MINIMUM COVERS FOR ARCS OF CONSTANT LENGTH

BY GEORGE POOLE AND JOHN GERRIETS

Communicated by Mary Ellen Rudin, September 22, 1972
Recently Gerriets [1] showed that a certain convex closed region with area less than $0.3214 L^{2}$ covers any arc of length L. This is an improvement to Wetzel's results [3] on the famous and elusive "Worm Problem" of Leo Moser [2]: What is the (convex) region of smallest area which will accommodate every arc of length L ? Wetzel showed that a certain truncated sector with area less than $0.34423 L^{2}$ covers all arcs of length L. By slightly modifying the region considered by Gerriets, we obtain a region with area less than $0.2887 L^{2}$ which covers any arc of length L.

Theorem. The closed region whose boundary is a rhombus with major diagonal L and minor diagonal $L / 3^{1 / 2}$ covers any arc of length L.

Herein we give a sketch of the proof. Details and other results will appear elsewhere. Let $P Q$ denote an arc of length L and with center C whose two subarcs are $P C$ and $C Q$. "Slide" the arc $P Q$ along $B E$ toward B so that C is always incident with $B E$ and $P Q$ becomes "tangent" to $A B$ or $B D$ (see the figure below) at the points X or Y. It is possible that all such

orientations of $P Q$ by rotation allow only one of the arcs $P C$ or $C Q$ to be

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 52A45, 52A40.
 Key words and phrases. Arcs, convex regions.

