ON THE MULTIPLICITY OF THE SPECTRUM OF THE SPACE OF CUSP FORMS OF GL_n^{-1}

BY J. A. SHALIKA Communicated by C. C. Moore, July 31, 1972

In this note I wish to announce certain preliminary results concerning a class of special functions arising in the theory of representations of groups defined over local fields. Before the preparation of this manuscript, the author obtained a copy of the recent paper [4] of I. M. Gelfand and D. A. Kajdan. Several of the results announced here are proved in their paper. I hope to indicate below what I have obtained independently and also what new results I have obtained since the paper of Gelfand and Kajdan became available. I wish to thank A. W. Knapp for the proof of a central lemma stated below.

1. A conjecture. Let k be a global field. Let G be an algebraic group defined over k. If R is a commutative k-algebra with identity, G_R will denote the group of points of G rational over R. The notation G(R) will also be used when convenient. R^{\times} will denote the unit group of R. Let A denote the ring of adeles of k. Let ω be a (unitary) character of A^{\times} trivial on k^{\times} . For $G = GL_n$, let

$$C_{\omega} = {}^{0}L_{2}(\boldsymbol{G}_{A}/\boldsymbol{G}_{k},\omega)$$

denote the space of cusp forms on G_A associated with ω . Let \hat{G}_A denote the set of equivalence classes of admissible, irreducible, unitary representations of G_A . For $G = GL_n$, $\Pi \in \hat{G}_A$, let $m_0(\Pi, \omega)$ denote the multiplicity with which Π occurs in C_{ω} .²

In this note, I want to present some evidence in support of the following:

CONJECTURE 1. For $\Pi \in \widehat{GL}_n(A)$, $m_0(\Pi, \omega) \leq 1$.

The conjecture has, of course, been proved for GL_2 . Classically this statement, somewhat reformulated, appears in the well-known works of E. Hecke and H. Maass in their development of the theory of automorphic forms on GL_2 . A systematic and general approach to Hecke theory was carried out in the framework of the theory of representations by H. Jacquet and R. P. Langlands [11]. The theory was also developed in a general setting by A. Weil [18]. In the work of Jacquet-Langlands, the proof of the simplicity of the spectrum of the space of cusp forms for GL_2 is reduced,

AMS (MOS) subject classifications (1970). Primary 22E55, 10D20; Secondary 33A75, 46F05.

¹ Research partially supported by NSF grant No. 31348.

² For ch(k) = 0, it is well known [11] that the assumption $m_0(\Pi, \omega) > 0$ implies that Π is admissible.