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1. Introduction. The purpose of this note is to announce some results 
regarding the existence of euclidean subrings of global fields. 

We first state the problem and give its history. Let F be a global field. 
So F is a finite extension of the rational numbers g or F is a function field 
of one variable over a finite field /c, where k is algebraically closed in F. 
Let S be a finite nonempty set of prime divisors of F such that S includes 
all infinite (i.e., archimedean) prime divisors. If P is a finite (i.e., nonarchi-
medean) prime divisor we denote by 0P its valuation ring in F. Now, given 
a finite set S of the above type, we get a ring 

os = n °p 
where P ranges over all prime divisors of F. We note in particular that if 
F is a number field and S the set of infinite prime divisors of F then Os 

is just the ring of F-integers. 
It is easy to see that there always exists a finite set S satisfying the above 

hypothesis such that Os is a unique factorization domain. Hence it seems 
natural to ask the following two questions : 

I. Does there always exist an S such that Os is a euclidean ring? 
II. Can one find an algorithm on Os for suitably chosen S which is 

related in some way to the arithmetic of the field F? 
The history of the above two questions is as follows : In a series of 

articles [l]-[4] Armitage discussed I and II for function fields over 
arbitrary ground fields. He insisted on a choice of algorithm related to the 
norm from F to a rational subfield. He showed that if the ground field of F 
is infinite, then an algorithm of his spacial type was possible if and only if 
the genus of F is zero. He also discussed the case when the ground field 
of F is finite, but again the only situation in which he gave a positive answer 
to I was when F is of genus zero. In [6], Samuel also discussed I for function 
fields F with arbitrary fields of constants, but here also he did not get above 
genus zero. Finally, in [5], M. Madan and the present author showed that 
the answer to both I and II is yes for function fields of genus one over 
finite fields. The method in [5] was to specifically construct an S and an 
algorithm on Os for given F. 
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1 ADDED IN PROOF. After this announcement went to press, the author discovered that 

Theorem 2 was proved by O. T. O'Meara in On the finite generation of linear groups over 
Hasse domains, J. Reine Angew. Math. 217 (1965), 79-108. MR 31 #3513. 
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