LOCAL SPECTRAL MAPPING THEOREMS

BY ROBERT G. BARTLE AND CONSTANTINE A. KARIOTIS¹ Communicated September 26, 1972

This note is concerned with various "localized versions" of the spectral mapping theorem (cf. [3, VII.3.11]) for bounded linear operators in a complex Banach space. The details of the proof and some additional results will be published elsewhere.

Let X be a complex Banach space and let $T \in B(X)$, the Banach algebra of all bounded linear operators on X. We recall (cf. [2, p. 1], [3, p. 1931]) that if T has the single-valued extension property then there exist a maximal open set $\rho_T(x)$ containing $\rho(T)$ and a unique holomorphic function $\tilde{x}_T: \rho_T(x) \to X$ such that $(\lambda I - T)\tilde{x}_T(\lambda) = x$ for all $\lambda \in \rho_T(x)$. The complementary set $\sigma_T(x) = C - \rho_T(x)$, which we call the *local* spectrum of x (with respect to T), is compact and is contained in $\sigma(T)$, the spectrum of T. If $F \subseteq C$ is closed we introduce the spectral manifold $X_T(F) = \{x \in X: \sigma_T(x) \subseteq F\}$.

THEOREM 1. Let f be holomorphic on a neighborhood of $\sigma(T)$ and suppose that T and f(T) have the single-valued extension property. Then $f(\sigma_T(x)) = \sigma_{f(T)}(x)$ for all $x \in X$.

This result² was proved by the second-named author in his dissertation [4]. The proof given there is similar to the proof of a theorem due to Colojoară and Foiaş ([1], [2, p. 71]). In fact, the conclusion of Theorem 1 is equivalent to the condition that if F is a closed subset of $\sigma(f(T)) = f(\sigma(T))$, then

$$X_{f(T)}(F) = X_T(f^{-1}(F)).$$

If $T \in B(X)$ and Y is a (closed) subspace of X which is invariant under T, then the spectrum of the restriction T|Y may be either smaller or larger than $\sigma(T)$. It is often desirable to limit attention to subspaces which do not increase the spectrum under restriction (e.g., ultra-invariant subspaces).

THEOREM 2. Let Y be a subspace invariant under T such that $\sigma(T|Y) \subseteq \sigma(T)$ and let f be holomorphic on a neighborhood of $\sigma(T)$. Then Y is invariant

AMS(MOS) subject classifications (1970). Primary 47A10, 47A60; Secondary 47A15.

¹ The authors were partially supported by a grant from the National Science Foundation.

² ADDED IN PROOF. After this note was communicated we discovered this theorem with a similar proof in C. Apostol, *Teorie spectrală și calcul funcțional*, Stud. Cerc. Mat. **20**, no. 5 (1968), 635–668.