# SPECTRAL MAPPING THEOREMS ON A TENSOR PRODUCT 

BY ROBIN HARTE<br>Communicated by Robert G. Bartle, August 17, 1972

1. Introduction. By computing the joint spectrum [5], [6] for certain systems of elements in a tensor product [3], [11] of Banach algebras, and applying the spectral mapping theorem in several variables [5], [6], [7], we find that we can determine the spectrum of certain linear operators, notably the tensor product $S \otimes T$ discussed by Brown and Pearcy [1], [12]. We can also see that the spectrum of an "operator matrix" [4], [10] is what it ought to be, and recover the results of Lumer and Rosenblum $[\mathbf{1 0}]$ about the multiplication operators $L_{S} R_{T}$ and $L_{S}+R_{T}$. Full proofs, and more detail, will appear elsewhere [8].
2. Left and right spectra. Suppose that $A$ is a complex Banach algebra, with identity 1 . Then the joint spectrum of a system of elements $a \in A^{n}$ is the union of the left spectrum and the right spectrum [5, Definition 1.1]:

$$
\begin{equation*}
\sigma_{A}^{\text {joint }}(a)=\sigma_{A}^{\text {left }}(a) \cup \sigma_{A}^{\text {right }}(a) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{A}^{\text {left }}(a)=\left\{s \in C^{n}: 1 \notin \sum_{j=1}^{n} A\left(a_{j}-s_{j}\right)\right\} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{A}^{\text {right }}(a)=\left\{s \in C^{n}: 1 \notin \sum_{j=1}^{n}\left(a_{j}-s_{j}\right) A\right\} \tag{2.3}
\end{equation*}
$$

The spectral mapping theorem [5, Theorem 3.2] is the equality

$$
\begin{equation*}
\sigma_{A}^{\mathrm{joint}} f(a)=f \sigma_{A}^{\mathrm{joint}}(a) \tag{2.4}
\end{equation*}
$$

valid for a commuting system of elements $a \in A^{n}$ and a system $f=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ of polynomials in $n$ complex variables. Equality (2.4) is also valid for left and right spectra separately; it extends [7, Theorem 4.2] to certain noncommuting systems of elements, where of course the idea of a "polynomial" has to be extended. Here we take a "polynomial in $n$ variables" to be an element of the free complex algebra-with-identity Poly $_{n}$ on $n$ generators $z_{j}$; for an arbitrary system of elements $a \in A^{n}$, the mapping $f \rightarrow f(a):$ Poly $_{n} \rightarrow A$ is a homomorphism which preserves

[^0]
[^0]:    AMS (MOS) subject classifications (1970). Primary 47D99, 46H99; Secondary 47A10, 46M05.

    Key words and phrases. Joint spectrum, spectral mapping theorem, tensor product, uniform crossnorm, operator matrix, multiplication operator.

