NONUNIQUE CONTINUATION FOR UNIFORMLY
 PARABOLIC AND ELLIPTIC EQUATIONS IN SELFADJOINT DIVERGENCE FORM WITH HÖLDER CONTINUOUS COEFFICIENTS ${ }^{1}$

BY KEITH MILLER
Communicated by M. H. Protter, June 19, 1972

Consider the problem of backward uniqueness for the uniformly parabolic equation
(a)

$$
u_{t}=\sum_{i, j=1}^{n}\left(a_{i j}(x, t) u_{x_{j}}\right)_{x_{i}} \equiv \nabla \cdot \mathscr{A} \nabla u \quad \text { in } \Omega \times[0, \infty),
$$

(1)

$$
\mathscr{A} \nabla u \cdot v=0 \quad \text { on } \partial \Omega \times[0, \infty)
$$

and the problem of unique continuation (and uniqueness for the Cauchy problem) for the uniformly elliptic equation

$$
\begin{equation*}
\sum_{i, j=1}^{n}\left(a_{i j}(x) u_{x_{j}}\right)_{x_{i}} \equiv \nabla \cdot \mathscr{A} \nabla u=0 \quad \text { in } \Omega \tag{2}
\end{equation*}
$$

where Ω is a bounded domain in R^{n}, v denotes the unit normal to $\partial \Omega$, and the symmetric matrix \mathscr{A} has its eigenvalues in $\left[\alpha, \alpha^{-1}\right]$, with $\alpha>0$. We construct examples of nonuniqueness for (1) when $n=2$, and for (2) when $n=3$; in each case α may be arbitrarily close to 1 and the coefficients are also Hölder continuous.

Backward uniqueness for (1) with \mathscr{C}^{1} coefficients was shown by LionsMalgrange [5]; probably the simplest proof is that of Agmon-Nirenberg [2] and Agmon [1] using the general method of logarithmic convexity. Carleman [4] long ago established unique continuation for (2) with \mathscr{C}^{2} coefficients when $n=2$. For $n \geqq 3$, unique continuation for (2) with $\mathscr{C}^{2,1}$ coefficients was proved by Aronszajn [3], and more simply with \mathscr{C}^{1} coefficients by Agmon [2]. See [1] and [6] for references to other results by Holmgren, Cordes, Hörmander, Landis, Lees and Protter, Bers and Nirenberg, and others.

An example of nonunique continuation was constructed by Plis [6] for a uniformly elliptic equation in the nondivergence form

[^0]
[^0]: AMS (MOS) subject classifications (1969). Primary 3537, 3542, 3562.
 Key words and phrases. Parabolic backward uniqueness, elliptic unique continuation, Cauchy problem, heat conduction, ill-posed problems.
 ${ }^{1}$ Supported by a C.N.R. Visiting Professorship at Universitá di Firenze and by NSF grant GP 29369X.

