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1. Introduction. The last few years have witnessed a renewed interest in 
the study of the number N(n) of solutions of the equation 

(1) cp{x) = n, 

where cp(x) is Euler's totient function. 
The purpose of the present paper is to give a sharpened (and corrected) 

version of a theorem of Carmichael (Theorem 1 ; see [1, Theorem II]) and 
the proof of a weak form of the 

CONJECTURE. For all natural integers rc, N(n) =/= 1. 

Lower case letters (with or without subscripts, or superscripts) stand, 
in general, for natural integers, p and q, in particular, for odd rational 
primes. 

2. Main results. 
DEFINITION. The natural integer k is said to be admissible, if its (unique) 

representation as a sum of distinct powers of 2, 

k = 2S1 + 2S2 + • • • + 2 \ sx > s2 > • • • > sr ^ 0, 

is such that 22Sj + 1 is a (Fermât) prime for each j = 1, 2 , . . . , r. The set 
of admissible integers is denoted by K. 

REMARK. For r = 0 it is convenient to consider the corresponding 
k = 0 as an admissible integer; one observes that formally one has 
2° + 1 = 2, a prime. 

THEOREM 1. Let %(k) be the characteristic function of the set K (x(k) = 1 
ifkeK, x(k) = 0ifk$K) and set g(m) = X o ^ m X ( k ) ; then, if n = 2m, 

equation (1) has 

(I) N(n) = g(m) + x(m) 

solutions. 

COROLLARY 1. For n = 2m, N{2m) = min (m + 2, 32). 
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