CONTRIBUTION TO THE THEORY OF EULER'S FUNCTION $\varphi(x)^{1}$

BY EMIL GROSSWALD
Communicated by Dock S. Rim, August 21, 1972

1. Introduction. The last few years have witnessed a renewed interest in the study of the number $N(n)$ of solutions of the equation

$$
\begin{equation*}
\varphi(x)=n, \tag{1}
\end{equation*}
$$

where $\varphi(x)$ is Euler's totient function.
The purpose of the present paper is to give a sharpened (and corrected) version of a theorem of Carmichael (Theorem 1; see [1, Theorem II]) and the proof of a weak form of the

Conjecture. For all natural integers $n, N(n) \neq 1$.
Lower case letters (with or without subscripts, or superscripts) stand, in general, for natural integers, p and q, in particular, for odd rational primes.

2. Main results.

Definition. The natural integer k is said to be admissible, if its (unique) representation as a sum of distinct powers of 2 ,

$$
k=2^{s_{1}}+2^{s_{2}}+\cdots+2^{s_{r}}, \quad s_{1}>s_{2}>\cdots>s_{r} \geqq 0
$$

is such that $2^{2 s_{j}}+1$ is a (Fermat) prime for each $j=1,2, \ldots, r$. The set of admissible integers is denoted by K.
Remark. For $r=0$ it is convenient to consider the corresponding $k=0$ as an admissible integer; one observes that formally one has $2^{0}+1=2$, a prime.

Theorem 1. Let $\chi(k)$ be the characteristic function of the set $K(\chi(k)=1$ if $k \in K, \chi(k)=0$ if $k \notin K)$ and set $g(m)=\sum_{0 \leqq k \leqq m} \chi(k)$; then, if $n=2^{m}$, equation (1) has

$$
\begin{equation*}
N(n)=g(m)+\chi(m) \tag{I}
\end{equation*}
$$

solutions.
Corollary 1. For $n=2^{m}, N\left(2^{m}\right)=\min (m+2,32)$.

[^0]
[^0]: AMS(MOS) subject classifications (1970). Primary 10A20; Secondary 10B15, 10B99, 10-01.
 ${ }^{1}$ This paper was written with partial support from the National Science Foundation, through the grant GP 23170.

